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l. INTRODUCTION

RED is a programming language designed, in accordance with the Dol "Steeiman” requirements, for
DoD embedded computer applications. The language combines features comman to most existing high
level languages with new capabilities for abstract data types, exception handling, rmultitasking, generie
definitions, and access to machine-dependent facilities.

1.1 DESIGN GOALS

The RED language has been designed to reduce the total life cycle cost of designing, implementing,
testing, and maintaining programs. For sma!' and medium size programs, most modern high level
languages are similar. However, for large programs, such as those commonly developed for embedded
applications, the facilities provided by a language become crucial. What distinguishes the RED
language is that it makes it easy to express solutions to the problems encountered when deveioping

large programs. ( ./ 0 | _
i

Although man§: factors are involved in judging program quality, four key properties that will
enhance the production of high quality programs have been specifically addressed in the design:

1) Modularity -- The program structure must be clearly modularized so as to facilitate design and
maintenance.

2) Abstraction -~ It must be possible to write programs in terms of a variety of abstractions that
are appropriate to the application area, and in a notation that is in keeping with the style of the
notation used for language-provided abstractions.

3) Reliability -- Coding and integration errors must be minimized sither by elimination of whole
classes of errors or by early detection.

4) Effectiveness -- The program must address the real problem and provide an eftective solution.
Use of assembly language should not be necessary.

Modularity.

Cost effective program development and maintenance requir:s a modular design. The RED
language provides a rich set of features for creating modules. Some of the kinds of modules

supported are:

procedures

functions

tasks

data structures

abstract data types

schedulers

multitasking synchronization schemes
common data pools

These modules may be nested within a translation unit or may be senarately translated in support of a
large cooperative programming effort. Separate translation is provided as an integrated feature of
the language.

The RED language also permits modules to be generalized by the use of its generic facility. For
example, a sort procedure that sorts arrays with integer components can easily be generalized to sort
arrays with components of any type.
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Abstraction

The RED language allows existing language notations (e.g., operators) and features (e.g., the case
statement) to be extended to encompass application specific abstractions. Once an abstraction has
been writte.., it may be used as if it were a built-in feature of the language. Although application
programmers may define their own abstractions (e.g. procedures and abstract data types), many
centrally defined facilities f{e.g. hbraries, common routines and data, real time schedulers) will be
written by systems prograumers. For these kinds of abstractions, the language provides an extensive
set of advanced features intended mainly for use by systems programmers. Once an abstraction is
defined by a systems programmer, application programmers can use the abstraction without having to
understand the advanced features used in its implementation,

Although the presence of advanced fatilities in RED increases the apparent complexity uf the
language, it actually decreases the complexity of the overall programming process. Application
programmers will be able to use more apprepriate abstractions rather than having to work out less
affective and less maintainable solutions to their problems.

Reliabilit

The RED language is designed to aid the programmer in the production of reliable programs.
Particularly dangerous language features have been avoided. The language is fully type checked
including the interfaces between separately transiated modules. Extensive checking for error
conditions is included; whenever possible, the checking is done during transiation rather than at
runtime. Facilities are also provided for detecting and handling runtime errors. Assertions may be
specified at any on'nt in a program, as an aid to program verification and as a way of detecting
runtime errors. cases where efficiency is an overriding consideration, users can suppress the
generation of code fc© ‘ecting runtime errors,

The scope rule ~ther with the capsule and expose declarations, allow users to completely
‘ontrol the regions ¢ program over which names are known.

Effectiveness

The RED language provides direct and convenient ways of dealing with real problems that have
traditionally been either difficult or impossible to handle within a high level language. This means that
users will not have to resort to assembly language to solve these probiems. The RED language
provides:

1) Access to machine-dependent . features -- Facilities include the ability to specify physical
representations, to access special memory addresses, to do hardware level 1/0, and to handle
hardware interrupts.

2) Control over all aspects of multitasking -~ Users can define their own schedulers and
synchronization schemes. Both multiprocessor systems with shared memory, as well as
distributed systems, can be supported.

3) Control over storage management -- Users can select a d,namic storage management strategy
that is appropriate to their application. In particular, applications which require dynamic
storage management are not forced to pay the price of garbage collection, but can choose
alternative methods.
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1.2 SEMANTIC FRAMEWOQRK

This section discusses some of the key concepts which form the semantic framework for the RED
language.

Scope Rules

A program consists of a nested set of scopes. When a name is used, a local definition is
referenced if one exists; otherwise, a definition is sought for in enclosing scopes. There are two basic
kinds of scopes: open scopes and closed scopes. Closed scopes differ from open scopes in that
names of variable definitions in enclosing scopes may not be used unless they are explicitly imported.

A capsule is a scope with special properties. Definitions within a capsule are explicitly exported
to those scopes which expose the capsule. Capsules are also the unit of separate translation.
Definitions exported from one translation unit can be exposed in other translation units.

Immediale and Deferred Declarations

Declarations are divided into two groups: immediate declarations (e.g., a variable declaration) and
deferred declarations (e.g, a orocedure). Immediate declarations are elaborated when they are
encountered, while deferred deciarations are elaborated ( nly when they are explicitly invoked.

Deferred declarations may have parameters, may be overloaded, and may be generic; immediate
declarations may not.

Deferr xd declarations are closed scopes; immediate declarations are not scopes at all.

A body can coriain declarations as well as statements. In a body, any declaration can appear
before the statements; deferred declarations are also permitted to appear after the statements. All
compound declarations {.e., those containing bodies) are deferred declarations.

Types and Subtypes

Data jtems {e.g, variables) have two kinds of proparties: those which must be known during
translation ({type properties) and those which must be known when a dat2 item is created (constraint
properties). A lype consists of a type name and the type properties. A subtype consists of a type
plus the constraint properties. The following are types:

INT
STRINGLASCIIY
RECORDLc : INT, b : STBING[ASCII)]

The following are subtypes:

INT{1..18)
STRINGLASCII] (5)

RECORD[a : INT(@..1), b:STRING[ASCII] (J)]

Note that type properties are always enclosed in [ 1, while constraint properties are always enclosed
in ().

Subtypes are always specified for declared variables. For formal parameters and function resuits,
either a type or a subtype is specified. A formal parameter which specifies a type can hava actual
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parameters with any subtype of that type.
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Since types consist only of information known at translation time, all type checking (e.g., checking
that the type of an actual parameter is the same as the type of the corresponding formal parameter)
is done during translation.”” Types are compared by comparing their “"extended name" (ie., their
identifier plus their type properties). Type checking does not involve structural equivalence (.e.,
comparison of types which are recursive).

In addition to the rich set of built-in types, users can also define their own types in one of two
ways: as "data structuies” or as "abstract types". A data structure is an abbreviation for a
composition of language types. For example,

ABBREV r : RECORD{a : INT(l..19),

b : STRINGLASCII] (5)1;
VAR ¥ : r;

is equivalent to

VAR x : RECORD[a : INT/(1..19),
b : STRING{ASCII] (5)];

An abstract type is a user-defined type (which is different from all other types) together with a set of
procedures and functions which operate upon data items of the typse. For example, a user can define
a STACK type together with the PUSH and POP operations.

Multitasking

Concurrent elaborations are achieved via the multitasking facilities. Tasks are like procedures
except they are invoked by a task invocation statement to produce a task activation. Activations of
the task are elaborated concurrently with the invoker. Each activation of a task is named by a uniqug
activation variable.

The elaboration of multiple tasks is unde ‘he control of a scheduler. In addition to a language
defined priority scheduler, users can also define their own schedulers. The particular scheduler that
is used for a task activation is selected based on the lype of its activation variable.

Task activations can communicate in two basic ways: via shared memory or via message passing.
Mutual exclusion over shared memory is achieved by datalocks (which are basically boolean
semaphores) and a region statement. Message passing is supported by mailboxes (which are basically
a queue of messages). A multiway wail statement is available which permits users to receive a
message from any one of several miailboxes. Multiway waits on sending of messages are also
provided. If there are several activations waiting to enter a region with some data lock, or to send a

message to a mailbox, or to receive a message from a mailbox, they are queued in first-in first-out
order.

Llsers can define their own synchronization schemes. This can be achieved zither by defining
these schemes based on datalocks or mailboxes or by way of the low-level muititasking facilities.
Low-tovel multitasking facilities include latches (which are basically spin-locks) together with a
standard sat of low-level operations which are used to describe scheduling, region statements, and
multiway waits. One important property of user-defined synchronization is that a particular scheme
can be defined independent of any particular scheduler (i.e., it can be used without modification with
any scheduler). Timing facilities are also available for measuring times or delaying based upon either
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real time or activation tims: (i.e, th.e total time some activation has actually been running).

Generics

Any deferred declaration can be generic. A generic declaration is a generalized form from which a
collection of different instances of the declaration can be derived. These instances are produced
during translation. Instances differ in the values of a set of generic parameters. Generic parameters
may be types, functions, procedures, tasks, or manifest values.

Generics are used to generalize a particular deferred declaration. For example, a generic sort
procedure can sort arrays with components of any type. A generic stack type includes stack types
which can have a component type (e.g, STACK [INTJ, STACK [STRING [ASCII]1). A generic
integrate procedure can integrate any function, for example, from floats to floats.

Generic declarations allow the user to write a single definition which is speclalized (i.e,,
instantiated) during translation for several specific uses, rather than having to write a separate
definition for each of the separate uses.

1.3 PROGRAMMING CONSIDERATIONS

The characteristics of the RED language discussed above represent a solution to the problem of
providing a standard language for military software production, one that can serve all applications
witk~ut ignoring the special requirements of each. The solution presented here is based heavily on
the data abstracticn capabilities that permit the same language to be specialized as needed, but in a
form thal is invisible to the applications programmer and, perhaps more importantly, to the
maintenance programmer. Changes required can be implemented in terms of underlying definitions so
that most often programs need not be changed at ali in order to-operate differently. Such underlying
modifications can, further, affect many applications programs, so that the maintenance effort is
substantially reduced along with maintenance costs.

In order to provide comprehensive support within the context of one high-level language, the RED
language necessariiy includes complex features that will neither be needed or necessarily understood
by all programmers. By separating out these complex features, it has been possible to retain a-core
of basic programming facilities that are similar to most other languages and, thus, easy to learn and

use, yet flexible enough so that sophisticated applications can be expressed using only these basic
facilities.
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1.4 QVERVIEW OF THE LANGUAGE REFERENCE MANUAL
This LRM is divided into four major parts:

GREEN (Chapters 1-7) - Basic Language Features. The features descrited here will be
needed ‘by all users. This part of the language Is roughly equivalent to the
PASCAL fanguage. Simple programs can be written using only these features.

YELLOW _ (Chapters 8-11) - Intermediate Language Features. The features descrited here
will be needed by most users.

RED (Chapters 12-14) - Advanced Language Features. The features described here
are provided mainly for use by systems programmers, rather than by application
programmers.

BLUE Appendices, Index.

The division into basic, intermediate, and advanced parts is only approximate. Although most
features described in a chapter belong in the part in which the chapter is placed, some features
discussed may conceptually belong in some other part. For example, the type declaration is
intermediate rather than basic, some aspects of the use of generics are advanced rather than
intermediate, and definition of operators is intermediate rather than advanced.

1.5 MANUAL LAYOUT

This document is a language reference manual, designed to provide the user with a complete
description of the format, usage and- effects of all language features. Basic lexical elements of the

language are described first (Chapter 2). Subsequent chapters present the various language
constructs.

Each section of the manual follows the same basic five-part form given below, although any of the
five parts may be omitted when it is not applicable.

1) Diagrams - A flow diagram format (described in Section 1.6) is used to specify the form for
lexical elements and the syntax for language constructs,

2) Informal Descrip*on - The text immediately following the diagrams informaily describes the

purpose, use and meaning of the lexical element or language construct.

3) Rules - The heading RULES indicates that the following text gives rules completely defining the
meaning of the lexical element or language construct, that are not already given by the syntax.

4) Notes - The heading NOTES indicates that the following text describes how the lexical element

or construct interacts with other parts of the language. Rules irom other sections, which are
relevant to this lexical element or construct, may be summarized.

5) Examples - The heading EXAMPLES prececas sample coding sequances that illustrate the various
valid forms of lexical elements or the use of language canstructs.

1.6 FLOW DIAGRAMS

Flow diagrams are used in this manual to specify all the forms of a single lexical element or
language construct. By tracing a path through a diagram, an instance of the element or language
construct represented by that diagram may be produced. There is a path through a diagram tor every
valid instance. These diagrams, together with the rules, provide a complete description of the
language. Rules for interpreting these diagrams are given below.
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1.6.1 FLOW DIAGRAMS FOR LEXICAL ELEMENTS

RULES

1> Each d.agram defines the forms for a particular lexical element (see Chapter 2). The name of
the element being defined appears in the oval, @, at the upper left of the diagram.

2) The diagram identifier, the letter in the- upper right hand- corner, @. is associated with this
specific diagram. An index of diagram identifiers may be found in Appendix F . In the example
illustrated, the syntax diagram defines all possible forms of an identifier token.

3) Boxes with circular ends, (@), represent lexical elements or characters from which they are
constructed.

4) If the rounded box represents an element defined in another syntax diagram, a letter above the
, rounded box is the diagram identifier associated with that element.

5) To generate forms of the element, the diagram is followed from left to right, from box to box,
starting at the point of the junction of the definition box, @, and ending when the end of the
path, (5), is reached.

6) When, in following a diagram, a black dot, @. is reached, any of the paths leaving the dot may
be followed.

7} It is not legal to "back up” along a convergent path, @

| 8) When a box is encountered, the element it contains is added to the right o/ the preceding

element. For example, the path shown by the dottad line, . generates the sequence “letter
letter underscore letter" {e.g., AB_C).
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1.6.2 SYNTAX DIAGRAMS FOR LANGUAGE CONSTRUCTS

®

statement

unlabeled statement feeemem

The diagrams defining language constructs are similar to those for lexical elements with the
following differences:

1) The name of the language construct being defined appears in a rectangular box, @, in the
upper left-hand corner. The illustrated exzample defines the syntax of a statement.

2) The diagram identifier, @, for language construct diagrams is an integer. An index of diagram
identifiers may be found in Appendix F .

3) Boxes with circular ends, such as, @. represent lexical elements; reserved words appear in
capital letters. A letter above the box, @. identifies the diagram in which the element is
defined.

4) Rectangular boxes within the diagram, such as @. represent language constructs defined
elsewhere. If a number appears above the box, the construct is defined in the -diagram
identified by that number.

5) Following a path through a grammar syntax diagram produces an instance of the construct.
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2. LEXICAL STRUCTURE
2.1 CHARACTER SET AND TRANSLATOR INFUT

Programs are composed of any sequence of characters from the 95-character ASCII or basic
55-character set. Any program can be written using only the 55-character set given below. Rulss
for converting from the 95-character ASCIi set to the 55-character set are given in the description
for specific tokens and token separators,

RULES
No distinction is made between upper and lower case letters except within a string lteral.

Basic 55-Character Set

%8 (Y, = /134207
3123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ_

95-Character ASCII Set

All characters in the basic 55-character set plus
Tngsei\1~

‘)~

abcdefghijkimnopgrstuvwxyz
NQTES

This document uses the 95-character ASCII set to describe the languege.
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2.2 TOKENS AND TOKEN SEPARATORS

operator symbol

;J {svecial symbo&

C
identifier
D

~

®

token
separator

eol

D

coment

L

pragmat token
separator

A token is the basic component used to build all constructs of the language. It is an indivisible
lexical unit that is-interpreted as a complete 'word* by the translator. A token separator is required in
somg cases between sokens and can be used otherwise to improve readability. A token or token
separator is composed of a contiguous sequence of characters.

RULES

Input text is organized into lines, each of which is composed of tokens and token separators. No
token or token separator can extend over more than one line of text. An end of line, eol, is a token
separator.

A token separator must appear between any two adjacent tokens, unless one of the tokens is a




-
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special symbol or an operator symbol (such as <) which does not have the form of an identitier (e:g.,

AND). Ona or more token separators may appear between any two tokens.
EXAMPLES . .

PERSON .WOMAN ,ADA

NOT A . % token separator required
F (A : INT) ;

F(A:INT);

END CASE % token separator required
WHEN A=> % token separator required

2.3 TOKENS
2.3.1 RESERVED WORDS

Reserved words have a fixed meaning within the syntax of the language.

RULES

The following are reserved words:
ABBREV END LOCATION
ABNORMAL EXCEPTION NAMED
ALL EXIT NEEDS
ALLOC EXPORTS NEW
ASSERT EXPOSE NONE
BEGIN EXTERNAL ouT
BY FOR oF
CAPSULE FROM PRAG
CASE FUNC PROC
CONST GENERIC PTR
CREATE GOTO RAISE
j]e] GUARD READONLY
ELSE IF REVERSE
ELSEIF IMPORTS REGION
NOTES

Reserved words may not be redefined,

RENAMING
REP
REPEAT
RERAISE
RETURN
SUBTYPE
TASK
THEN

T0

TYPE
VAR
WAIT
WHEN
WHILE

No distinction-is made in the use of upper or lower case characlers in a reverved word; thus, end, End, END, snd enD are alf

equivalent.
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2.3.2 OPERATOR SYMBOLS

Operator symbols are names of functions which are invoked with a special prefix or infix syntax
(see Section 5.2).

RULES
, The operator symbols are:
l %% exponentiation
*, / multiplication, division
, DIV, MOD integer division, modulo
+, - addition, subtraction, prefix pius and minus
& concatenation
, =, /=2, 0, 28,4, <= relations
) IN set membership
OR or (set union),
XOR exclusive or (set symmetric difference)
AND and (set intersection)
' NOT logical negation (set complement)
' NOTES

The definition of operator symbol names is discussed in Section 132,

‘ 2.3.3 SPECIAL SYMBOLS

Special symbols are tokens which have special meaning in the syntax.

RULES

The table below lists the special symbols and their uses.

component selection, attribute inquiry
parenthesization, subscripling, parameter lists
type properties, translation time properties, constructors
list separation

name separation, goto labels

statement terminator, end of compound
declaration headers

alternative indication, function result

ranges :

constant resolution

assignment

e Yy 1 we 20 W [} N e
. A\ V4 Lond w

All of the special symbols, except [, 1, and #, consist of characters exclusively from the 55-character
set. The following 55-character alternates are provided,

——

144 55-character form of [
> 55-character form of ]
N HH] 55-character form of #
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2.3.4 IDENTIFIERS

An identifier is a name which is associated with a language construct by a definition (see Section
3.5)

RULES

Reserved words and operator symbols (e.g.,, AND) may not be used as identifiers.

All characters in an identifier, including underscore, are significant.

NOTES

No distinction is made in the use of upper or lower case characlers in an identifier (vg, Abc, abe, and ABC are sl equivalent).

EXAMPLES

THIS_IS_A_VERY_LONG_NAME

This_is_a_very_long_name % same as above

VELOCITY

UNIT_01

REAR_UNIT_0O1

THIS_IS__ILLEGAL % two underscores together
AS_IS_THIS_ % 11legal
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2.3.5 LITERALS

. ©

floa+ literal

-G )
H
string literal
i

boolean literal

)

(
R

indirect Jiteral

I

1979

Léiterals are used to specify values for some built-in types and for user-defined indirect types (see

Section 4.4.3).

RULES

The values of all literals are known at translation time.

The rules for resolution of the type and subtype of a literal are described in Section 5.7,

NOTES

The following aeclions deacribe specific litersls. User-defined litersls, which are langusge construcis rather than tokens, are

described in Sections 5.7 and 135.
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2.3.6 NUMERIC LITERALS

flnat
Titeral

Numeric literals specify integer \;alues for the INT type and floating point values for the FLOAT

type.

RULES

————

A floating point literal in E form is interpreted as the decimal number times ten to the integer
value following E. The default precision of a floating point number is the number of digits preceding

E, minus any leading zeros to the left of the decimal point.




16 Section 2.3.6 RED LRM 8 March 1979
NOTES

Numeric Literals are always positive valuas. A negative literal is obtasined by prezeding the Hters! with the prefix minus
oparator. This operation is performad at translafion lime,

\ Bscause a float liters! in » {oken, blanks may nol appear within the float literd,

The precision of 2 flost literal iz first detarmined by context and, if that is not sufficient, the default prscision is usd (ses -
Section 5.7).

No distinction is made in the use of upper or lower caso @ in » flosf literal,

EXAMPLES .

% integer literals
g

' 2354
% floating point literals
3.6E7 % default precision 2
1.0E5 % default precision 2
7.25 % default precision 3
6.324e-6 % default precision 4
g.0 % default precision 1
g.012 % default precision 3

2.3.7 ENUM LITERALS

| ©

c

M
- \_/ identifier

An enum literol specifies a namedvalue of an enumearation type.

. NOTES

; The same anumeraiion lileral may appear in several erumeration types. For example, the enumerstion literal 'ORANGE may
. sppear simultaneously in the ENUM types FRUIT and COLOR.

Because an enum literal is » token, no blank may sppear between the sposirophe and the identifier.

Bacause the enum literal is distinguished by an spostrophe, the identifier following the spostrophe may be defined in the same
? scope (l.e, RED may be the name of » variable in the same scope in which 'RED is an enum literd)).

{ The Ianguage views s charscter set ss an enumaration type, where each character corresponds to sn enum literal,

e B o o o T = = e e
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No dislinction is made in uze of uppsr or lower caso (s g, 'RED, ‘Red, 'red, and ‘reD are sll squivalent),

:
EXAMPLES

' 'RED
’ *POSITIVE

'ACTIVE

"LEFT_ALIGNED

} ‘Right_Aligned

'RED! % 1llegal closing apostrophe
% 11legal character beginning identifier
{

'4TH
2,3.8 STRING LITERALS

string
literal

w1
@-TGM character except or)T—CD——

A string literal specifies a value of a STRING type. A string is a sequence of characters. Each
! character is an enumeration literal. If a string includes only those characters in the 95-character set,
i the special literal form, string literal, can be used. A string literal is considered to be a shorthand
form for the concatenation of characters defined by enum lLiterals; e.g., "ABC" is considered a

' shorthand form of
A& 'B & 'C

RULES

' is the 55-character form of ",
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. NOTES

A string lileral msy not extend over one line. If an end of line 18 found before the lerminating quote, the string litaral token is
terminatad and an error monnage is igcuad. The & infix operator can ba vsed lo obiain & long string by concatenation.

] Upper or lower ceao characters are distinguished in sirings: @.g, "ABC" is not equivelsnt to "sbe™ Al characters In the
95-character ASCII set hzve o corresponding snumaration lilorsl (defined in Appendix C.15). For example, since 'bracket is the
enumaration litoral for [ and 'number the enumeration literat for », the string

"LA#B]"
is squivalent to

‘1bracket & "A" & ‘number & "B" & 'rbrackef
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EXAMPLES

% creating a string too long for a single line

"VERY...LONG...STRING"
& "REST OF VERY LONG STRING"

% placing carriage return and line feed
% at the end of a string
"ONE LINE"™ & ‘'CR & 'LF

19
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2.3.9 BOOLEAN LITERALS

boolean
literal

A boolean literal specifies a value of type BOOL.

2.3.10 INDIRECT LITERAL

indirect
Titeral

RED LRM 8 March 1979

The indirect literal NIL specifies that value of an indirect type (see Section 4.4.3) which points to

no dynamic variable,




INTERMETRICS INC, Section 2.4 21
2.4 TOKEN SEPARATORS

2.4.1 COMMENT

——

OO

A comment provides program documentation,

RULES

———1

A comment is terminated by the end of the line on which it appears. Comments are ignored by
the transiator. )

2.4.2 PRAGMAT

©

pragmat
token
separator

8
pragmats

pragmats supply information to the translator which does not affect language semantics. Pragmats
are described in Appendix B.
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3. PROGRAM STRUCTURE
3.1 PROGRAM

translation @

urit

54
capsule declaration @

A program consists of one or more translation units which may communicate with each other.
Each translation unit is a capsule declaration. Capsule declarations may also be nested within
translation units and are described more generally in Chapter 8. A capsule declaration consists of a
header, a body, and an ending. The header names the capsule and provides an exports list that makes
definitions within the capsule available to other translation units. The body consists of a sequence of
declarations, statements, and assertions. Declarations provide definitions for names, statements specify
actions to be performed, and assertions specify conditions that are to be true at the points where the
assertions appear. The ending terminates the text of the capsule declaration.

The intent of a program is realized by elaborating the program. The notion of elaboration is
meant to provide a general way of describing closely related transiator functions, such as execution
for stotements and evaluation for expressions. Elaboration can apply to statements, assertions,
declarations, and expressions, and includes translation-time as well as execution-time activities. The
elaboration of a compound syntactic unit is defined in terms of the elaboration of its constituent units.

In the simplest case, a program consists of just one translation unit. The invocation, initiated by
the programming system, consists of elaboration of the body of that unit, When there is more than
one translation unit, the user must select (via the programming system) a particular one to be invoked
as the main capsule,

¢ mraee——
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EXAMPLES

} CAPSULE prime EXPORTS NONE;
{ CONST max := 100;
% this program prints all prime numbers that are
' % Tless than or equal to max
VAR numbers : ARRAY INT(2..max) OF BOOL
; := [2..max : TRUE];

FOR 1 : INT(2..max) REPEAT
IF numbers(i) THEN
VAR J : INT(2#1 .. max+i) := 2#%i;
WHILE j <= max REPEAT
numbers(i) := FALSE;
J = J+i;
END REPEAT;
END IF;
END REPEAT;

OPEN (SYS_OUT, "TTY", 'NEW)
WRITELN ("PRIME NUMBERS");
FOR 1 : INT(2..max) REPEAT
IF numbers({i) THEN
WRITELN (1);
END IF;
END REPEAT;
CLOSE (SYS_OUT, 'SAVE);

END CAPSULE prime;
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3.2 BODY

bady

'ﬁ
©
-

body element

(
o

body
element
8
assertion
4
| declaration |
36
statement

A body consists of a sequence of body elements, each of which is either a decilaration, a statement,
or an assertion. A body is used where a related sequence of body elements must be treated as a unit.
Statements and declarations that can contain bodies are known as compound statements and compound
declarations. For example, one possible form of an if statement is: ;

IF expression THEN bodyl ELSE body2 END IF

In this example, bodyl and body2 specity the actions to be taken after elaboration of the axpression
yields true or false, respectively. Depending on the bodies given, the acticns may range from

elaboration of a single element to a complex sequence of actions.

Empty bodies are permissible; this is useful when no action needs to be taken.
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RULES

An immediate declaration (see Section 3.3) must precede all statements. A deferred declaration
(see Section 3.3) or generic declaration (see Section 11.3) may either precede or follow all statements.

Elaboration of a body consists of the elaboration of all body elements other than deferred and
generic declarations. The elements are elaborated in the sequence in which they are written, unless
control Is transferred by an exit, return, or goto statement.

NQTES

A body is sn open scope (soe Section 35). Declarations and goto labels cefine names within » body.

An assertion may appear at any poinl in the sequence of body elements since it may be useful befors or affer either e
declaration or a statement.

Since deferred declarations and generic declarailons are somotimes quite long, placing them after the sfelements often mekes @
program more readable. Placement of deferred declarstions can be determined by programming standards and style considerations.
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3.3 DECLARATIONS

5

declaration irmediate declaration

[ :

deferred declaration

69

generic declaration

15
imnediate : . ‘
Jgeclaration r— variable declaration ﬁ
18
constant declaration
-
l capsule invocation
declaration | e
] 57

exception declaration L

[

17

deferred abbreviation
declaration ( declaration

L 19

A

o} type declaratjon

7

L,—- compound declaration
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}
) 48 @
1 procedure declaration h—-j
compound
declaration 50
' |~ function declaration feee—
! ) |
-~ ) 54
)‘ A caosule declaration io——
t 61
| \—f  task declaration |t

All declarations define names. There are two basic kinds of declarations: immediate and deferred.
Immediate declarations are elaborated when encountered during the elaboration of a body. Deferred
declarations are not elaborated when first encountered; instead, they define deferred units which are
elaborated only when invoked from elsewhere.

A generic declaration stands for a collection of deferred declaretions and, therefore, is not
elaborated when encountered (see Section 11). for a discussion of generics.

NOTES

Differences between immediate and deferred declarations are listed below,

Immediate declaration Deferred declaration
elaborated when encountered elaborated when invoked
can not have parameters can have parameters (7.3)
must appear before statements can appear either before or

after statements (3.2)

can not be overloaded explicit overloading Is permitted for
all except types
(11.2)
can not be generic can be generic (11.3)
can not have a translation can have a translation time
time property list property list (11.1.2)
{ are not compound includes all compound declarations

are not scopes are closed scopes(3.5)
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! Deferred declarations and their characteristics are summarized below.

Declaration Invocation Effect of Invocation

procedure (7.1) . procedure invocation performs some action
statement

function (7.2) function invocation produces a value
primary

task (10.1) task invocation an activation of the task
statement is elaborated concurrently

capsule (8.1) capsule invocation makes exported definitions
declaration visible

abbreviation (4.4.1) abbreviation produces an abbreviated
invocation type or subtype

type (4.4.2) user-defined subtype ‘ produces a subtype of

a user-defined type

EXAMPLES

1) Immediate declarations.

VAR flag : BOOL := TRUE;

CONST pt := 3.14159;

EXCEPTION stack_underflow, stack_overflow;
EXPOSE ALL FROM compool;

{ 2) Deterred declarations.
ABBREV max_int : INT(min..max);

TYPE complex (n,m : FLOAT) : RECORD{r,i : FLOAT(186, n..m)]1;

PROC compiex_complement (VAR x : complex);
X.1 1= =x.1;
END PROC complex_complement;

FUNC even (3 : INT)
RETURN (1 MOD 2)
END FUNC even;

i u

> BOOL;
8;

! TASK reader;

END TASK reader;

CAPSULE compool EXPORTS ALL;
% varijable declarations

END.éAPSULE compool;
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3) Generlc declaration,

GENERIC t : TYPE NEEDS := (t,t);

% swap. for any type
PROC swap(VAR a,b : t);
CONST ¢ := a;
a := b;
b := c;
END PROC swap;

3.4 ASSERTIONS

RED LRM 8 March 1979

% needs assignment
% operator

assertion

r—-—-———_
express JON prmrmr———

26

An assertion specifies a condition which will be true when the assertion is elaborated. Assertions
are used to make programs easier to read and maintain, to provide information useful to an optimizing
compiler, and to provide checkpoints for formal and informal verification of correctness.

RULES

The expression must have type BOOL. Elaboration of an assertion consists of testing the valus of
the expression and, if the expression is false, raising the X_ASSERT exception.

NOTES

An assertion does not necessarily imply runlime checking. If the condition can be checked during transiation, then object code
need not be geanaraled for it If an nsserfion is known to be false st iranslation time, » warning is isauved. A pragmat is available for

suppressing the X_ASSERT exception (see Appendix B).
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EXAMPLES

FUNC sqrt (a : FLOAT) => FLOAT;
ASSERT a > 0.06;

END FUNC sqrt;--
PROC full_divide (a,b : INT, OUT c,d
ASSERT a>=@ AND b>@;

VAR x : INT(0..a) := @;
VAR y : INT(8..a) :=

ASSERT bs#x+y = a;

WHILE y >= b REPEAT
ASSERT bzx+y = a;
X 1= X+13
y := y-b;

END REPEAT;

a) AND y<b;

ASSERT (bxx+y

o
d :

X 3
Y i

ASSERT (btc+d = a) AND 0<=d AND

END PROC full_divide;

Section 3.4

: INT);

d<b;

31
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3.5 NAMES AND SCOPES

A name is cithcr an identifier or a definable symbol (see Section 13.2). Definable symbols are
used only to refer to buillzin operations or to functions and procedures that provide additional
definitions for built-in operations.

Every use of a name must have a corresponding definition; definitions of names are never created
by defauit. There are several forms of definition, including declarations, formal parameters, and goto
labels. A name may have more than one definition; when this occurs, it must be possible to associate
each use with the appropriate definition. The association is governed by the scoping rules.

A scope'is a syntactic form in which names may be defined. An open scope is a scope in which all
definitions in the enclosing scope are known, provided that those definitions do not conflict with a
local definition of the open scope. A closed scope differs trom an open scope in that matching
identifiers (the ta zet of an exit statement) and goto labels (see Section 6) from the enclosing scope
are never available and variables from the enclosing scope are available only when explicitly listed in
an imports list.

RULES

All deferred declarations (see Section 3.3) are closed scopes. Bodies (see Section 3.2), compound
statements (see Section 6), and generic declarations (see Section 11.3) are open scopes.

Everything in one scope that is outside any scope contained within it, is called local to that scope.
For all non-deferred definitions, two definitions are considered to conflict if the same name is
associated with both. Conflicting definitions local to the same scope are not permitted. Deferred
declarations with the same name do not necessarily conflict (see Section 11.1).

The definitions which are known in a scope are:
a) all local definitions; and

b) each definition which is known in the enclosing scope, is available, and does not conflict with a
local definition.,

For open scaopes, all definitions known in the enclosing scope are available. For closed scopes, all
definitions known in the enclosing scope are also available, with the following two exceptions:

a) goto Jabels and matching identifiers; and

b) variable definitions, that are not explicitly imported (see Section 3.7).

Any occurrence f a name other than a defining occurrence is a use of that name. A use of a
name which is local  some scope must correspond to a definition which is known in that scope. Each
use must correspon. to exactly one definition. For names other than names of deferred units, at most
one definition of a name will be known in each scope.
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NQTES

Definilions which are exposed in a scope (see Saction 8.2) are considered to be loce! definitions of that scope.

Ucas of names local to some scope are uniformly associated with definitions; e, the definition associated with s particular use

is the same, no matter where within the scope that use occurs.

Conflicting dofinitions of a singls name can exist in ditferent scopes without restriction. Conflicting definitions of a single
nams within a gingle scope are excluded since this would make it impossible to sssociste each use uniquely to s single definition.

A definition may be any of the following: a daclaration (swe 3.3), a formal psrameter (ves 7.3 ), » goto label (see 8), the index
of a repeal stolement (see 6.5), » matching identifier (ses B), a formel persmeter (see 7.3), 8 generic parsmeter (see 11.3), or @

nesded name (see 11.4). .

EXAMPLES

sample BEGIN %
VAR a, b ¢« INT(1..18); %
CONST ¢ := 4; %

BEGIN
% begin statement is an

VAR b : BGOOL; %
...sample... %
.a. %
b... %
.COO x
..’D... x

e eXean %

END;

5ﬁ6c p (VAR x : INT);
% procedure is a closed

...sample...
ceeBo..
RPN O

OOOCQIQ

cePees
e X

HRRRXRRRN

END PROC p;

END sample;

definition 1
definition 2 and 3
definition 4

open scope
definition §

refers to definition
refers to definition
refers to definition
refers to definition
refers to definition
i1legal

% definition 6 and
scope

illegal
illegal
i1legal
refers to definition
refers to definition
refers to definition

S N
-t
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3.6 FORWARD REFERENCES TO NAMES

Use of a variable or constant name Yefore it has been created is not permitted.

RULES

No use of a name defined as a variable or constant can appear before its definition.

A deferred unit is said to reaquire a variable or constant if it either contains a use of the name of
the wvariable or constant or contains an invocation of some other deferred unit that requires that
variable or constant. No invocation of a deferred unit that requires a variable or constant may appear
before the definition of that variable or constant.

NOTES

Forward references to deferred definitions, golo labels, and exceptions are slways allowed.
EXAMPLES

1) Legal forward reference to a deterred declaration.

BEGIN
P;

PROC p;
END PROC p;
END;
2) Correct uses and incorrect forward references to immediate declaratiagns.

VAR a : INT(1..16) := b + 3; % incorrect, b has not beer
% elaborated
23 % correct

b; % correct, h has been elctor2ts

VAR b : INT(1..5)
VAR ¢ : INT(1..20) :
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3.7 IMPORTS LIST

wperts

{MPORTS

A compound declaration (procedure, function, task, or capsule) may include an imports list. The
imports list specifies that certain variables, known in the enclosing scope, are to be made available in
the compound declaration. A variable imported into a compound declaration can be restricted so that
it cannot be modified inside the compound declaration.

RULES

Every name in the imports list of a compound declaration must be associated with a variable
definition (see Section 4.2) known in the immediately enclosing scope.

If ALL is specified, all variable definitions which are known in the enclosing scope are available to
the compound declaration (see Section 3.5).

If a list of names is specified, the definitions associated with those names are available to the
compound declaration.

If READONLY precedes a name, that variable is treated as a readonly data item within the
compound declaration {see Section-4.2).
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NOTES

Abbreviation declarations and type declarstions are deferred declorstions and, thus, sre closed scopes. Neither decloration can
include an import list so vsrisbles from the enclosing scope may not be used within either of these declaraticns.

A closed scope which imports ALL is, assentially, en open scope except that goto lsbels and matching identifiers are not
available,

EXAMPLES
sample BEGIN

! VAR a,b : INT(0..10);
CONST ¢ := 4;

PROC pl;
% known = ¢, pl, p2, p3
END PROC pl;

PROC p2 IMPORTS a, READONLY b;
% known = a, b(as readonly), ¢, pl, p2, p3

END PROC p2;

PROC p3 IMPORTS ALL;
% known = a, b, ¢, pl, p2, p3

END PROC p3;

END sample;
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I* 4. TYPES
i 4.1 TYPES AND SUBTYPES

Types and subtypes are used to specify the properties of datz items. These properties control
) both the values that a data item may have, and the operators, functions, and procedures that may be
applied to it.

Data properties may be divided into two groups: type properties, which must be known during
translation; and constraint properties, which need not be known during translation, but which must be
known when a data item is created, The type of a data item is the collection of all type properties.
The subtype of a data item is the collection of all properties, both type and constraint properties.
The subtype of a data item is said to belong to its type. Typically, many subtypes, each with a
different set of constraint values, will belong to the same type. The two mast common constraints on
types are range constraints (which limit the range of values of data items having the subtyps) and size
constraints (which specify the size of data items having the subtype).

e g S -

EXAMPLES
1) Types
INT
FLOAT
STRINGLASCII]

2) Subtypes

INT(L .. 18)
FLOAT(5, -100.90 .. 1¢0.9)
STRINGLASCII] (5)

4.1.1 USE OF TYPES AND SUBTYPES

A subtype must be specified wherever a data item is to be created, such as a variable declaration.
A type or a subtype must be specified for each formal parameter. Invocation of a deferred unit with
formal parameters is permitted only if the type of each actual parameter is the same as the type
specified (or the type to which the specified subtype belongs) for the corresponding formal parameter.
Verifying that types are the same is called type checking; since types consist only of properties that
are known during transiation, all type checking is done during transiation (see Section 4.1.5).
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EXAMPLES

VAR {1 : INT(1..10);
VAR s : STRINGLASCII] (5);

p(i);
q(i);
p(s); % 41legal - type of 5 15 not INT

PROC p (x : INT);
END PROC p;
PROC q (x : INT(1..18));
END PROC q;
4.1.2 SPECIFYING TYPES AND SUBTYPES

For some types, the only type property is their name, Examples are:

BOOL
INT
FLOAT

Other types require additional properties. These properties, for all types but arrays, are given in a
comma-separated list enclosed in square brackets, called the type property list. For example,

ENUML'a, 'b, 'c] % values of an enumeration type are always
% known at translation time

is an enumeration type for the values 'a, 'b, and 'c.

When no additional constraints are needed on a type at the time of data creation, the subtype
specification of the data looks the same as the type specification of the data. For example,

BOOL
ENUM['a, 'b, 'c] % a variable of this subtype may take all listed
% values .

When additional constraints are needed, they are specified in a comma-separated list enclosed in
parentheses, called the constraint property list. For example,

INT(8..16) % a single range constraint
FLOAT(18, 0.0 .. 50.9) % 2 constraints, precision and range
ENUM['a, 'b, 'c] ('a .. 'b) % a variable of this subtype may only
% take on the constrained range of
% values
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In some-cases, the praperties of a type may themselves include types. For example,

RECORD[a : INT, b : BOOL]
) STRINGLENUMC'a, 'b, 'c]] % the characters of which a STRING is
* % composed must be known at
. % translation time

This nesting allows types to be constructed based upon other types. For example,

RECORD[ez : INT,
b : UNION[w : BOOL,
X,¥ : RECORDIm,n : FLOAT],
Z : ENUM['red, 'greenl],
c ¢ ENUM['yes, 'no, 'maybell

L O

Subtype constraints are specified by placing constraint property lists after the type and any types
contained within the type. For example,

RECORD[a : IMT(-5..5), b : BOOL]

STRINGLENUMI'a, 'b, ‘'cl ('a .. 'b)] (18) % this is a string
% of length 10 made up
% only of A's and B's

" e —— e s s o o

Array types and array subtypes are written in a special form. For example,

i ARRAY INT OF FLOAT % a one-dimensional array type.

l ARRAY INT, ENUM['a, 'b, 'c] % a two-dimensional array type

\ % where the first dimension

: OF FLOAT % 1s subscripted by integers

3 % and the second by enum

i % Tliterals.

; ARRAY INT(1..190) OF % a one-dimensional array

' FLOAT(10, ~5.0 ..5.8) % subtype.

ARRAY INT(1..19), ENUM['a, 'b, 'c] % a two-dimensional array

\ OF FLOAT(16, -5.¢ .. 5.0) % subtype where the first

' % dimension has size 19 and

. % 1s indexed by integers

X % and the second has size 3
% and is indexed by enum
% 1literals (e.g, x(5, 'b))

RULES

When a specification which could be either a type or a subtype (e.g., BOOL or ENUML 'a, 'b1) is
used in a context where either a type or a subtype is permitted (e.g., for a formal parameter), the
specification is interpreted as a type.
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XAMPLE
VAR x : ENUM['a, ‘'bl; %X ENUM('a, 'D] 1s a subtype
PROC p(x : ENUME'a, 'bl); % ENUM['a, 'b] is a type

END PROC p;

PROC q(y‘: STRINGLENUM['a, 'b]] (5));% ENUM['a, 'b] is a subtype
END PROC a;
4.1.3 RELATIONSHIP BETWEEN TYPES AND SUBTYPES

Given a subtype, the type to which it belongs can be found by deleting all constraint property lists.
For example,

Subtype lype
800L BOOL
INT(8..18) INT

ENUML'a, 'b, 'c) ('a .. 'b)
RECORD{a : INT(-5 .. 5),

b : BOOL]
STRINGIENUML'a, 'b, 'c]

(*a .. 'b)] (18)
ARRAY INT(1..19),

ENUM['a, 'b, 't]
OF FLOAT(1¢,0.8..100.08)

ENUM['a, 'b, 'cl
RECORD[a : INT,

b : BOOL]
STRINGLENUM['a, 'b, 'c]]

ARRAY INT,
ENUM[ 'a, 'b, 'c]
OF FLOAT

4.1.4 LANGUAGE-DEFINED AND USER-DEFINED TYPES

The language defines a flexible and useful set of types. These types are summarized in Section
4.3. Detailed rules are given in Appendix C.

In some cases, type and subtype specifications will be quite long. For this reason, a convenient
abbreviation facility is provided (see Section 4.4.1). Users can also define the abstract types which
are specifically needed for their applications. This capability is provided by the type declaration (see
Section 4.4.2) together with the capsule declaration (see Chapter 8).
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4.1.5 TYPES, TYPE EQUIVALENCE AND TYPE COMPARISON
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)

type
comparison

10 10
type 5 | tyoe 6

Type equivalence rules are used to determine if two types are the same. Type checking is the
comparison of two types using the type aquivalence rules. Types are checked implicitly for
assignment (see Section 6.1) and for invocation of deferred units (see Section 3.3). Types are checked
explicitly for type comparisons. All type checking occurs at transiation time.

RULES

Tvpes

Identifier I must be the name of a built-in type, The cbbreviation invocation must produce a type.
Identifier 3 must be associated with a generic parameter thst has 3 type ganeric constraint (see
Section 11.3.1).

Type Comparison

The result of elaborating a type comparison is a boolean which is true if type 5 is the same as
type 6.

To determine if two types are the same, the types are first expanded and then compared.
A type is expanded in the foliowing cases:

a) If the type contains any abbreviation invocations (see Section 4.4.1), each abbreviation
invocation is replaced by the type which is the result of the invocation.

b) For record or union types, any components of the form

compl, comp2, ..., compi : type
are replaced by

compl : type,

compe : type,

compi : type

c) Any TYPEOF forms are replaced by their result type (see Section 4.5.2).

d) Any references to type generic parameters are replaced by their replacement elements (see
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Section 11.3.1).
Two expanded types are the same if they meet the foliowing requirements when compared:

a) corresponding type identifiers within the expanded types refer to the same definition;
b} the values of corresponding properties in type property lists are the same;
{ : c) for ARRAY types, the corresponding index and component types are the same; and

d) for RECORD. and UNION types, the component names are the same 2nd occur in the same order.

NOTES

! Built-in types are deascribed in Seclion 43 TYPEOF is described in Section 4.5.2,

Type checking is simplified by the fact that all indirect types sre new types and, Qhu's, not expanded into their underlying
types. This means that type expansion does not result in cycles.

EXAMPLES

1) Expanding abbreviations

ABBREV a : BOOL;
TYPE b : BOOL;

VAR m : a;

VAR n : b;

VAR ¢ : BOOL; % the types of m and o are the same but both
% are difTarent from the type of n

2) Expanding components

VAR a : RECORDIx,y : INT(1..18)];
VAR b : RECORDIx : INT(5..8),

y : INT(12..19)]; the types of a and b are
the same since round
bracketed information
is removed to obtain
the type.

the type of ¢ is not the
same as the type of a,
since component names
are in a different
order.

VAR ¢ : RECORD(y,x : INT(1..18)1;

WRAINIVILFRFTRFRNRRN
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4.1.6 SUBTYPES. SUBTYPE EQUIVALENCE AND SUBTYPE COMPARISON
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Subtype equivalence rules are used to determine if two subtypes are the same. Two subtypes can
be explicitly compared for equality using a subtype comparison.

RULES

ubtypes

Identifier 1 must be the name of a built-in type. Abbreviation invocation 1 must produce a UNION
subtype with no subtype constraint. Abbreviation invocation 2 must produce a subtype. Identifier 4
must be associated with a generic parameter that has a subtype generic constraint (see 11.3.2).

Subtype Comparison

The result of elaborating a subtype comparison is a boolean which is true if subtype 6 is the same
as subtype 7.

Two subtypes are the same if their types are the same and if the values of the corresponding
constraints in the constraint property lists are equal. Subtype comparison Is only permitted for
subtypes whose constraints have types for which = is defined.

NOTES

Built-in types are deacribed in Section 4.3. SUBTYPEOF and INDEXOF are described in Section 4.5.1,

Subtypes are compared for equahty st ann;lclion lime whenever possible, otherwise, comparison will be performed at runtime.

Two sublypes sre implicitly compared for squalily when en aclusl psrameler is compared to a formel parsmeter, spscified by
subtype, and bound by VAR or READONLY (see Secltion 7.3). 1f the comperison produces the valus false during implicit
comparisons, the X_SUBTYPE exception is reised.
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4.1.7 RANGE

range

26 26

.
expression ——@— expression  frememaomere

A range represents a contiguous sequence of values of some type.

RULES

Expression | and expression 2 must have the same type.

If expression 1 is less than expression 2, the range represents all successive values beginning with
the lowest value (expression [} and ending with the highest value (expression 2). 1f expression I and
expression 2 have the same value, the range represents oniy that value. If expression 2 is less than
expression 1, the range represents no values,

NQTES

Ranges with no valuos sre useful when dofining index varisbles (ses Section 8.5), since they allow zero slaborations of
rapest siatement body, and when defining arrays (aes Section 4.3, Appendix C.7), since they sliow empty arrays. Renges are used

for constreint properties of integer, enumeration, and floating point subtypes, for case statement value labels {zee Section 8.4), and
for slicing (se® Section 5.3).

EXAMPLES

VAR w : ENUM[ 'one, 'two, 'three, 'four, 'five,
'six, 'seven, 'eight, 'nine, 'ten] ('one .. 'five);
VAR x,y : INT(1..18) :=-19;
VAR z : FLOAT(16,1.0 .. 106.8);
VAR a : ARRAY INT(1l..x) OF BOOL;

e o .

FOR 1 : INT(x..y) REPEAT

END REPEAT;
CASE x
WHER 1.. 5 => ...
WHEN 6..18 => ...
END CASE;

ceo8{X..y). ..




4.2 VARIABLES AND CONSTANTS

} Each wvariable or constant has a subtype which is known when it is created and does not change
during its lifetime. There are two kinds of variables, defined variables and dynamic variables. The
value of a variable may be both accessed and modified. The value of a constant may be accessed but
not directly modified. At creation, all constants must be initialized to some value and each variable is

either initialized to some value or is uninitialized. Variables and constants are data items are further
described in Section 5.1.

NOTES

Defined verigbles are specified in the following ways:
a) a varioble decloration (deciared varisble) (see Section 4.2.1)
b) an OUT formal psrameter {parameter varisble) (ses Seclion 7.3)
¢) a VAR formal parsmeter (parameter variable) (see Section 7.3)

d) a repeat stolement with » for phrase (index varisble) (sse Section 8.5)

Definitione of declared variables, OUT parsmeter varisbles, and index vsrisbles creste new varisbles. Defimitions of VAR parameter
verisbles associsie new nsmes with exirling varisbles,

There are also dynamic variables which sre not defined but rather c:eated by elshoration of the ALLOC statement (ses Seciion
44.3)

Constants are defined in the following ways:

a) a.constont declaration (Caclared constant) (see Section 4.2.1) !

b) a CONST formal psrometer (parsmeter conatant) (see Section 7.2)

Definitions of deciared constanis and parameier constanis crente new constants.
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) \ 4.2.1 VARIABLE OR CONSTANT DECLARATION

(®

variable
declaration

12
subtype

<

. 28 ‘l\; df’-‘-—--'-—-7523::l>...-._—
. location
expression soecification |

constant
declaration

| :

12
subtype }-
( 26
‘{ He=d } expression
These declarations define variables and constants.
RULES
\ Each dentifier is defined as a variable (VAR declaration) or a constant (CONST declaration) in the

scope in which the declaration is focal.

: If no subtype Is specified for a constant, the subtype of the constant becomes the subtype of the
i initialization expression. Initialization is performed by assignment ( ;= ),
|

Elaboration of a variable declaration results in the creation of a variable, If an initialization phrase
is present, the wvarweble is initialized fo the value given by elaborating the expression in the
initialization phrase. Elaboration of a constant declaration results in the creation and initialization of a
constant,
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NQTES

When initralization 13 specified, the type of the verisble or constent must be sssignable (see Saction 4.3). The X_INIT exception
ie raisad whan thero is an attempt to sccess the value of an uninitialized varishle.

Some variables are automatically imtalized, even + hen initialization is not explicitly epucified. These are varisbles of indirect
typss and ACT, MAILBOX, DATA LOCK, and FILE types. Automatic initislizetion caa also be estsblished for user-defined types (see
Section 13.3).

Location specifications are used for machine-dependent rapresentations and are described in Section 12.3.

EXAMPLES

VAR x : INT(1..108) := 5;
CONST vy := TRUE;

CONST z -+ INT(2..10) := 18;
VAR a : FLOAT(19,1.3 .. 1¢3.9);

4,3 OVERVIEW OF BUILT-IN TYPES .
This section gives a brief overview of the types which are built into the ianguage, along with their
subtypes, procedures, and functions. A more detailec oresentaticn of each of the types is given in

Appendix C. '

1f a value can be assigned to a variable (e, if the := procedure is defined), the type of the
variable is said to be assignable. Note that assignment is used in the following cases:

a) assignment statements (see Section 6.1}

b) initialization (see-Section 4.2.1%

¢) CONST formal parameters (see Section 7.3)%; and
d) OUT formal parameters (see Section 7.3).

The relational operators are =, /=, ¢, ), <=, = (see Section 5.2

Boolean

Type: BOOL

Subtype: BOOL

Unary: NOT

Binary: AND, OR, XOR, =, /=
Assignable: yes

Literals: see Section 2.3.9

Integer

Type: INT

Subtype: INT(min..max)

Unary: +, -

Binary: +, ~, *, DIV, s+, MOD, rslational operators
Function: ABS, SUCC, PRED

Assignable: yes

Literals: see Section 2.3.6

e e

e+ mgmn 4 e

[ aee S e+ ey e
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Floating Point

Type: FLOAT
Subtype: FLOAT(precision, min..max)
Unary: +, - .

Binary: +, -, %, /, *%, relational operators
Function: ABS, FLOOR

Assignable: yes
Literals: see Section 2.3.6

Precision is the minimum number of decimal digits to be represented.

Enumeratior,

Type: ENUM{enum-Titerall,enum-1iteral2,...,enum-1iterain]
Subtype: ENUML[enum-literall,enum-1iteral2,...,enum-1iterain]
or
ENUM{enum-1iterall,enum-1iteral2,...,enum-1iterainl(min..max)
Binary: relational operators, &
Function: SUCC, PRED, POS
Assignable: yes
Literals: see Section 2.3.7

Enumeration values are ordered as they appear in the type property list, with the leftmost
being lowest. A range constraint in an enumeration subtype restricts values from the set of all
possible values (in the type) to the set of legal values for this subtype.

Record

Type: RECORD[compl:typel,comp2:type2,...,compn:typen]
. Subtype: RECORD{compl:subtypel, comp2:subtype2,...,compn:subtypen]
Binary: =, /= ,
Component Selection: record_var.comp
Assignable: yes, if all components are assignable
Constructor: see Section 5.6

Successive components having the same type can also be written as

compl, comp2,...,compn:type]




Type: UNION[compl:typel, comp2:type2,...,compn:typen]

Subtype: UNION[compl:subtypel, comp2:subtype2,...,compn:subtypen]
or

UNION[compl:subtypel, comp2:subtype2,...,compn:subtypen]
{exp)

Binary: =, /=

Component Selection: unton_var.comp

Tag Inquiry: unfon_var.TAG

Assignable: yes, if all components are assignable

Constructor: see Section 5.6

A union type consists of multiple components, only one of which may be accessed at any
point in the lifetime of a union variable of this type. If a subtype constraint is present,
variables with that subtype can have only the component whose name is specified in the
subtype constraint as an enumeration value. For example,

UNION[a : INT(@..10), b : BOOL] ('b);

The tag inquiry returns the name (as an enumeration value) of the component currently
accessible. The component which is present in a union may change over the lifetime of the
union variable. Successive union components having the same type can also be written as

compl,comp2,...compn:typed.
Array

Type: ARRAY dim-typel, dim-type2,...,dim-typen OF comp-type
Subtype: ARRAY dim-subtypel, dim-subtype2,...dim-subtypen OF comp-subtype
Binary: & (concatenation for one-dimensional array), 3, /=
Component Selection: array_var(positionl, position2,...,positionn)
array._var({min..max) (slicing for one-dimensional
array)
Assignable: yes, if component type is assignable
Constructor: see Section 5.6

The dimensions must be integer or enumeration types or subtypes.

Type: SET[typel

Subtype: SET[subtype]

Unary: NOT (complement)

Binary: AND (intersection), OR (union),
XOR (symmetric difference), IN (membership),
relational operations {(subset relations)

Assignable: yes

Constructor: see Section 5.6

The type contained in the type property list can only be INT or an enumeration type.
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Type: STRING type]

Subtype: STRINGLsubtypel (length)

Binary: & (concatenation), relational operations

Component Selection:” ‘string_var{(position)
string_var{min..max)

Assignhable: yes

Literals: see Section 2.3.8

The type contained in the type property list must be an enumeration type.

Fixed Point

The first quarterly review of the DoD common language effort has emphasized the lack of a
consensus on the nilitary's requirement for a fixed point facility. The fixed point described in
Steetman is actually a scaled integer facility. It seems that more discussion is necessary before a
decision is reached by the military on the fixed point facility necessary for most applications. When
this determination is reached, the design can be built into this language. Some of the possible design
alternatives for fixed point are discussed in the companion Justification document.

NOTES

There are, basides the basic {ypes discussed above, some other-built-in types designed for specisl purposes. The MAILBOX,
DATA_LOCK, and ACT types are described in Chapter 10. The LATCH type is described in Appandix C.13. FILE types are described
in Appendix C.14. Pointers are not a-language type but are instesd provided vie the indirect form of the type declaration (see
Section 4.4.3).

4.4 DECLARATION OF SUBTYPES AND TYPES

Two kinds of declarations can be used for subtypes and types, the abbreviation declaration and the
type declaration. Both are deferred declarations.

An abbreviation declaration defines an abbreviation. Invocation of an abbreviation produces the
type or subtype specified in the declaration of the abbreviation. An abbreviation is particularly useful
when a type or subtype with a long specification is needed in several places in a program. As with all
deferred units, an abbreviation can be parameterized. This permits a single abbreviation to be used
to abbreviate a set of related subtype:.

A type declaration defines a new type distinct from all other types. The user can create an
abstract data type by placing the type declaration within a capsule declaration, together with a set of
procedures and funclions which-operate on actual parameters of the defined type. Since a type is a
deferred unit, it may be parameterized (parameters are used to specify the constraint property list of
subtypes of the new type) and may be generic (the translation time property list serves as the type
property list), There are two basic forms of the type declaration: a direct type declaration and an
indirect type declaration. Variables and constants having an indirect type can be used to reference
dynamically allocated variables.
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RULES

The identifier in an abbreviation declaration is defined to be an abbreviation in the scope in which
its declaration appears.

Only CONST formal parameters may be used in an abbreviation declaration. An abbreviation
declaration which abbreviates a type may not have any formal parameters.

Elaboration of an abbreviation invocation consists of elaborating the actual parameters, binding
the actual parameters to the formal parameters of the named subtype abbreviation {see Section 7.3),
and elaborating the type or subtype in the abbreviation declaration. The result of the invocation is the
elaborated type or subtype. If the specification following the : could be a.type or a subtype, then the

result of an invocation can be used as cither a type or a subtype. Abbreviations are assumed to be
normal (see Section 7.2.1).

NOTES

An sbbreviation declnration is a closed scope The formal parsmelers sre defined in this scope. Since an abbrevislion decleration
cannot have an imports list, no variable names may be used within the sublype.

The only legal use of the abbreviation is in an sbbrevistion invocalion. 1f the sbbreviation is perameterized, the identifier may
not bs used without paramaters as » fype.

Recursive cycles involving only sbbrevistions ere illegal since the resulling specificetion would be infinite.

Abbreviations can be overlosdsed (sec Section 11.2) and can be generic (see Section 11.3).

EXAMPLES
ABBREV I10 : INT(1..18); ¥ This is equivalent to
VAR y : I19; % VAR y : INT(1..10);

ABBREV flags(n : INT) :
ARRAY INT(1..n) OF BOOL; % This is equivalent to
VAR b : flags(18); % VAR b : ARRAY INT(1..18) OF BOOL;

ABBREV ASCII : ENUML...J; % see Appendix C for a complete
% definition

VAR x : ASCII; % ASCII is a subtype here

PROC p(x : STRINGIASCII)); % ASCII is a type here

END PROC p;
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A type declaration defines a new type, distinct from all other types. For example, the declaration

TYPE bits(n : iNT) :,ARRAY INT(1..n) OF BOOL;
defines a new type
bits

Since the type declaration is a deferred declaration, it defines a deierred unit (a type) which can be
invoked. Invocation of a type produces a subtype of that type. For example,

bits(9)

is a subtype of the type bits. The actual parameter list forms the constraint property list of the
subtype. For example, for the subtype bits(B), the constraint property list is (8). The formal
parameters of a type are also used to define the attributes of subtypes of that type (see Section 4.5.3).

Each subtype of a type is defined in terms of the subtype specified in the type declaration, which is
called the underlying subtype. For example, the underlying subtype of bits(®) is

ARRAY INT(1..5) OF BOOL

Each underlying subtype of a new type will belong to a type called the underlying type. For example,
the underlying type of bits is ARRAY INT OF BOOL. Each wvariable (or constant) of some

user-defined subtype has a component variable (or constant) called the underlying variable (or
underlying constant) of the underlying subtype. The standard component selector .ALL is used to
access the underlying variable or constant explicitly.

Several operations are sutomatically defined for each new type: access to the underlyir,, variable
or constant; access to components (if any), equality, and assignment. No other operations are
automatically defined for a new type. The essential operation on which all other operations are based
is .ALL qualfication. Given a variable (or constant) with some new type, .ALL qualification produces
the underlying variable (or constant). For example, given

VAR a : bits(5);
then
a.ALL

is the underlying variable of a and has subtype ARRAY INT(1..5) OF BOOL

If the underlying type has components (e.g., is an array, record or union), then a component
selector operation is automatically defined for the new type in terms of the component selector
operation of the underlying type. For example,

a(i)
can be written instead of
a.ALL({)
If the underlying type is assignable, then assignment is also defined for the new type in terms of




INTERMETRICS INC. Section 4.4.2 - s7

the assignment for the underlying type. For example, given

VAR b,c : bits(5);
then
b := c;
can be written instead of
b.ALL := c¢.ALL;

If equality is defined for the underlying type, then equality is also defined for the new type in terms
of equality for the underlying type. For example,

b=c¢
can be written instead of
b.ALL = c.ALL

A new abstract type can be created by placing a type declaratian in the body of a capsule.
Operations for the new abstract type are user-defined by procedures and functions defined in the
same capsule. The operations take parameters and/or produce results of the abstract type. These
operations are implemented using .ALL or component selection to access the underlying variables and
constants. One important property of an abstract data type is that it is possible to change the
underlying type without affecting any users of the abstract type. To achieve this, users of the
abstract type must be denied access to the underlying variables of the abstract type. This is
accomplished by not exporting either .ALL qualification or any of the selector operations that are
automatically defined.

RULES

The identifier in a direct type declaration is defined to be a type name in the scope in which the
type decloration appears. If there is no formal translation time property-list, then this identifier is the
type. If there is a formal translation time property list, then the types consist of the type identifier
together with an actual translation time property list.

Only CONST formal parameters may be used in a type declaration.

Elaboration of a user-defined subtype consists of elaborating the actual parameters, binding the
actual parameters to the formal parameters of the named type (see Section 7.3), and elaborating the
subtype. The result of a user-defined subtype is a subtype of the invoked type, whose constraint
property list is the actual parameter list of the invocation. The underlying subtype of this result
subtype is the elaborated subtype. -

Each newly defined type has the following operations automatically defined:

a) Assignment (:=) is defined in terms of assignment for the underlying type. If the underlying
type is not assignable, the defined type is not assignable.

b) Equality (=) is defined in terms of equality for the underlying type. If equality is not available
for the underlying type then it is not available for the defined type.
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c) Component selection, if the underlying type has components.

d) .ALL qualification, which allows access to underlying variables and constants.

Types are assumed to be no'r'mal (see Section 7.2.1),
NOTES

A rew type is invoked to produce o subtype of that new type. Unliko an abbreviation, if the fype is paremelerized (and has no
type property lint), the identifier may be used without paramelers as 8 lype. 1f no parameler list is present in tha fype declerstion,
the dafinsd typo has only o singlo subfype 1f a formal parameter list is present, the defined type has one or more sublypes,

A type declaration is a closed scopa. The formal parameter names are defined in this scope. Since o fype declaration cannot
have an imports list, no varisble names may be used within the subtype.

Usars can dafine their own assignment () procedure, equality (s) function, end selaction functions for new typee. A user
definition of aasignment, equality, or of selection will overrde the automatically provided sssignment (ase Section 13), equality (see
Section 415), or seleclion (see Section 134). It is also posshle to define initialization and finalization oparations which are
automatically ‘nvoked st the beginning and end (respectively) of the lifelime of o dats ifem having & user-defined type (vue Section
133).

The type declaration, when used in & generic declarstion (sse Soction 11.3), can ba used {o craate a family of {ypes. Any actual
transiation time properiy list asrves as the type properly list,

Representation apecificalions sre used for machine-depandent programs ond are describad in Section 12.2,
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EXAMPLES

1) New string types

b TYPE strngl@ : STRINGLASCII] (10);

GENERIC {1 : INT
! TYPE mstrngli] : STRINGLASCII] (i);

TYPE strng (J : INT) : STRINGLASCII] (J);

VAR x : strngld; % underlying variable {s a string
% with length 10
VAR ¥ : mstrng [k); % underlying variable is a string with
4 % length k where the value of k must
% be known at translation time
VAR z : strng (m); % underiying variable is a string with
% Tlength m where the value of m need
% not be known until run time.

.

2) An abstract data type ~- stacks

CAPSULE stackcap EXPORTS stack, init, push, pop;
CONST size := 106;
ABBREV elemtype : FLOAT(16, -16€3.6 .. 1609.8);
TYPE stack : RECORD[ top : INT(@..size),
elem : ARRAY INT(1l..size) OF
elemtypel;

PROC init (VAR s : stack);
s.top := 0;
END PROC init;

PROC push (VAR s : stack, e :elemtype);
s.top := s.top + 1;
s.elem(s.top) := e;

END PROC push;

PROC pop (VAR s : stack, OUT e : elemtype);
e := s.elem(s.top);
s.top := s.top - 1;

END PROC pop;

END CAPSULE stackcap;
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Section 4.4.3
4.4.3 DECLARING AND USING A NEW INDIRECT TYPE

: .
i
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allocation

statement

28
ALLOC | variable

actual
parameters
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expression

A variable -having an indirect type (calied an indir

indirect_variable) is a pointer. The value of an
indirect variable is either nil or a reference to some dynamic varizble (.e., It 'points’ to the dynamic
variable), For example, in

TiPE £ : PTR STRINGLASCIT] (5);
VAR x,y : t;

the variables x and y are indirect variables that can either have th
dynamic variable with subtvpe STRINGIASCII] (5). Al indir
to have value nil. There is also a literal for the value nil. For

e value nil or can point to some

ect variables are automatically initialized
example,
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x 3= NIL;

sets the value of % to be nil.

A dynamic variable is created by elaboration of an allocation statement. For example, elaboration
of - >

ALLOC y PTR := “ABCDE";

creates a new dynamic variable with subtype STRINGLASCII] (5), initializes it to have the value
®"ABCDE", and sets y to point to this dynamic variable. Note that dynamic variables, unlike other
variables, are not defined or named,

Dynémic variables are referenced via indirect variables. As with direct types, .ALL qualification
and component selection operations (if the underlying dynamic variable has components) are
automatically defined. These operations are permitted only if the value of the indirect variable is not
nil. The operations provide access to the referenced dynamic zariable or its components (.e., they
are 'dereferencing' operations). For example,

VAR s1,s82 : t;
ALLOC s2 PTR := "value"; % create dynamic variable

LY

...S1.ALL. .. % 11legal since sl is nil
...81(1)... % i1legal since sl is nil
...82.ALL. .. % the dynamic variable pointed to

% by s2, having the value *ABCDE"
. ..82(3)... % a component of the dynamic

% variable pointed to by s2,
% having the value 'C

ALLOC sl PTR; % create dynamic variable 2
s1.ALL := s2.ALL; % sets the value of dynamic variable 2
% to be equal to the value of <ynamic
- % variable 1 (*value")

The lifetime of a dvnamic variable is different than that of other variables. A dynamic variable
exists as long as there is some way of accessing it. This means that the litetime of a dynamic variable
Is not coupled to the elaboration of a scope.

As is the case for direct types, assignment (:=) is also automatically defined for indirect types.

The assignment operation for indirects, however, is a "sharing” assignment. For example,

VAR al,a2,bl,b2,b3 : ¢t;
ALLOC bl PTR := "VWXYZI" ; % creates dynamic variable 1
ALLOC b3 PTR := “abcede"; % creates dynamic variable 2

al := NIL; % sets al to nil

a2 := al; % sets a2 to nil

b2 := bl; % b2 now points to dynamic
% variable 1

bH1.ALL := b3.ALL; % changes value of dynamic
% variable 1

... bl.ALL ... % has value "abcde”

.o» bD2.ALL ... % has value "abcde"
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..o B3.ALL ... % has valus "abcde"

The equality operators (=, /=) are also automatically defined for indirect types. For example,

...al = a2... % true, both are nil
...hl = be... % true, both point to same dynamic variable
...b2 = b3... % false, each points to different

% dynamic variable
...b2.ALL = b3.ALL.. % true, both dynamic variables have the
% value “abcde"

As is the case for all data items, the subtype of a dynamic variable need not be known untii the
dynamic variable is created. Constraints on a dynamic variable which are to be resolved at creation
time are specified via an allocation property list in an allocation statement. For example,

TYPE vstring : PTR(len : INT) STRING[ASCII] (len);
VAR v1,v2 : vstring;

ALLOC v1 PTR(3) := "abc"; % (3) is the allocation
% property list
ALLOC v2 PTR(4) := "abcd";

Dynamic variables can contain components having indirect types which reference other dynamic
variables. This means that recursive data structures and data structures having cycles can be created.
For example,

TYPE 1ist : PTR RECORD{ val : INT(&..100),

) next : listl;
VAR 1st : 1list;

% create a singly linked 1ist with 3 elements
ALLOC 1st PTR := [val : 3, next : NIL];
ALLOC 1st PTR := Ival : 2, next : 1stl;
ALLOC st PTR := [val : 1, next : 1st];

% now make the list circular
I1st.next.next.next := 1st;

In addition to indirect variables, it is also possible to detine indirect constants. Like all constants,
an indirect constant must be initialized and its value may not be changed. The value of the dynamic
variable which it references may, however, be changed.

When creating an abstract data type and its subtype, the programmer must ensure that the
implementation of the abstract type is invisible to the user. This permits the implementation to be
changed without affecting those parts of a program which use the abstract type. The programmer
who implements an abstract type should be able to change the underlying type from a direct type to
an indirect type (and vice versa), without affecting the users of the abstract type. For example, an
abstract stack data type could be implemented using either an array (a direct type) or a linked list
(achieved via an indirect type). For this reason, it is important that when a type is exported from a
capsule used to realize an abstract data type, it should not be possible to detect outside the capsule
whether the exported type was a direct or an indirect type.

et e ¢ o gt e
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As mentioned above, a dynamic variable exists as long as thera Is some way to access it.
Detecting when there is no longer any way to access a dynamic variable and reclaiming ths storage
that was used for it usually involves a process called garbage collection. In some cases, the overhead
of full garbage collection can be avoided and 2 simpler and less costly strategy used. For cases
where this is impossible; ‘the user can avoid garbage collection costs by the use of the FREE
procedure. if v is an indirect variable that points to some dynamic variable and there are no other
pointers to that dynamic variable, then

FREE(V);

reclaims the storage for that dynamic variable and sets the value of v to nil. If there were other
pointers to the dynamic variable, the X_FREE exception is raised (this prevents the problem of
dangling pointers). Although this avoids the cost of garbage collection, it Introduces some cost in
checking that there are no other pointers. For those cases where sven this cost is unacceptabls, it is
possible to inhibit the generalicn of code for doing this checking by suppressing the X_FREE
exception (see Appendix B),

RULES

Indirect Type Declaration

The identifier In an indirect type declaration is defined to be a type name in the scope in which
the indirect type declaration appears. Indirect types are referenced using the same ru|e's (both
syntax and semantics) as for direct types (see Section 4.4.2),

Only CONST formal parameters may be used.

Indirect types are invoked using the same syntax as diract types (see Section 4.4.2). Elaboration
of a user-defined subtype consists of elaborating the actual parameters and binding the actual
parameters to the formel parameters ! of the named type {sce Section 7.3),

The result of a user-defined subtype is a subtype of tha invoked type, whose constraint property
list is the actual parameter list of the invocation,

The value of an indirect variable or constant is either nil or 8 reference to some underlying

dynamic variable. All indirect variables are automeiically initialized to have the value nil.
The following operations are automaticzily defined for each indirect type:
a) Assignment (:.) is a sharing assignment. 1f the indirect subtypes of left hand side and right
hand side are not equal the X_SURTYPE exception is raised.

b) Equality (=) is defined to produce true if both of its actual parameters are nil or if both
reference the same dynamic variable.

¢} Component selection, it the underlying type has components. If the value of the variable or
constant is nil when component selection is applied to the variable or constant, the X_NIL

exception is raised.

d} .ALL qualification which gives access to the underlying dynamic variable. 1f the value of the
variable or constant is nil when .ALL qualification is applied to the variable or constant, the
Y_NIL exception is raised.

Types are assumed to be normal (see Section 7.2.1).

[
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Allocation Statement

The variable must have an indirect type on which .ALL qualification is available.

Elaboration of the allocation statement consists of:

a)
b)

c)

d)
e)
f)
g)

elaborating the variable;
elaborating the actual parameters;

binding the actual parameters to the formal parameters 2 in the indirect type declaration
associated with the type of the variable;

elaborating the subtype in the indirect type declaration;
allocating a dynamic variable having that subtype;
if initialization is specified, Initializing the newly created dynamic variable (using :=) and

setting the variable named in the allocation statement to be a reference to the newly created
dynamic variable,

The dynamic variable must have an assignable type if initialization is specified in an allocation
statement.

NOTES

4.1.5).

Becsuse indirect iypes sre always new typse, and thersfore named, the type equivalence rules are simplified (see Section

An indiract type declarstion is a closed tcope. The formal parameter names (of both formsl perameter lisis) sre defined in this
scope. Since » fype decleration cennot have an imports list, no varisblo names may be used within the subfype.

Represantation spocifications sro used for machine-dependent programs and sre deucribed in Soction 12.2,

EXAMPLES
1) Indirect string types

TYPE strl@ : PTR STRINGLASCII] (18);

GENERIC 1 : INT
TYPE mstr [1] : PTR STRINGLASCII] ({);

TYPE str(J : INT) : PTR STRING[ASCII] (J);
TYPE vstr : PTR(u : INT) STRINGLASCII] (u);

VAR w : strl@; % w can point only to strings
% of length 19
VAR x : mstr [ml; % x can point only to strings

% of length m where the value of
% m must be known at translation
% time

VAR y : str(n); % y can point only to strings
% of length n where the valus of
% n need not be determined until
¥ run-time

VAR z : vstr; % z can point to strings of any

% 1length. The length of the
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% string 1s determined when the
% string is allocated.

2) Defines symbol tables which can hold symbols of different lengths
CAPSULE sym_tab_cap EXPORTS sym_tab, init, insert, look_up;

TYPE sym : PTR (len : INT) STRINGLASCIII(len);

TYPE sym_tab (stize : INT) : RECORDItop : INT(®..size),
syms : ARRAY
INT(1..8120)
"OF syml;

PROC init (VAR s : sym_tab);
s.top := 9;
END PROC init;

FUNC took_up (READONLY s : sym_tab,
val : STRING[ASCII])

=> INT(@..s.top);
FOR 1 : INT(1 .. s.top) REPEAT
IF s.syms{1).ALL = val THEN
RETURN {1;
END IF;
END REPEAT;
RETURN &;
END FUNC look_up;

PROC insert (VAR s : sym_tab,
val + STRINGLASCII],

OUT 1index : INT);

ifndex := look_up (s, vail);

IF index=8 THEN
s.top := s.top + 1;
ALLOC s.syms(s.top} PTR (val.LEN) := val;
index := s.top;

END IF;

END PROC insert;

END CAPSULE sym_tab_cap;

65
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4.5 TYPE AND SUBTYPE INQUIRY, PREDICATES AND ASSERTIONS

66

Since a formal parameter can specify a type, rather than a subtype, a deferred unit with a formal
parameter can be invoked with actual parameters having any subtype belonging to that type. Although
this flexibility is often quite useful, there are cases where it is desirable to further limit either the
values or subtypes that actual parameters are permitted to have (in order to exclude values which are

not meaningful for -the deferred unit). In many cases, these limitations also allow the translator to
produce more efficient code.

Some limitations can be achieved by specifying a subtype (rather than a type) for a formal
parameter. A finer degree of control can be achieved by including an assertion at the beginning of the
body of the deferred unit. Assertions concerning subtypes are supported by language facilities for

inquiring about the type, subtype and subtype properties of a data item. These features are discussed
in the following subsections,

Inquiry is aiso useful for several other purposes, including specifying the subtype of local data
items of a procedure or function and sccessing array Index bounds.

45.]1 SUBTYPE INQUIRY
RULES
If exp is any expression, then the result of elaborating

SUBTYPEOF(exp)

is the subtype of that expression.

If exp is an expression for an n-dimensional array and i is'a manifest Integer expression whose
value is between one and n, then the result of elaborating

INDEXOF(exp, 1)

is the 1'th index subtype of the array. The form

INDEXOF (exp)
is equivalent to
INDEXOF(exp, 1)
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EXAMPLES
EXCEPTION not_found;
FUNC f (x : INT) => SUBTYPEOF(x);
END FUNC £;

PROC q .(VAR a,b : ARRAY INT OF FLOAT);
ASSERT INDEXOF(a) = INDEXOF(b);

END PROC q;
FUNC search (a : ARRAY INT OF FLOAT, v : FLOAT) =) .INDEXOF(a);
FOR 1 : INDEXOF(a) REPEAT
IF a(i) = v THEN
RETURN 1;
END IF;
END REPEAT;
RAISE not_found;
END FUNC search;

PROC r (VAR x,y : FLOAT);
ASSERT SUBTYPEOF(x) = SUBTYPEOF(y);

END PROC r;
45.2 TYPE INQUIRY
RULES

If exp is an expression, then the result of elaborating
TYPEOF (exp)
Is the type of that expression. If st is a subtype, then the result of alaboratiné
TYPEOF(st)

is the type to which that subtype belongs (see Section 4.1.3).

NOTES

Elsborations of TYPEOF {akes ploce during transiation

Q7
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In addition to inquiry of an entire subtype, it is also possible to inquire about specific subtype

constraints, called attributes_._

s

The attributes of built-In types are listed in Appendix C.

Each formal perameter of a user-defined type is an attribute of that type. The identifier which Is
the name of the formal parameter is used as the attribute name.

ATTRIBUTE INQUIRY

attribute
inquiry

12

subtype

26

expression

%]

1dentifier

@

Attribute inquiry allows attribute values to be accessed.

RULES

The identifier must be the name of an attribute of the specified subtype or of the subtype of the

specified expression.

Elaboration of attribute inquiry produces the value of that attribute.
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EXAMPLES
INT(1..19).MAX % 10
FLOAT(S, 0.8 .. 10.0).PREC % 5
STRING[ASCIII(8).LEN % 8

TYPE matrix (first, second : INT) : ARRAY INT(1..first),
. INT(1..second)
OF FLOAT(12, -190.6 .. 100.8);
matrix(5,8).first %5
matrix(5,8).second % 8

PROC s (VAR x : FLOAT);
ASSERT x.PREC <= 10;

END PROC s;

FUNC searchl (a : ARRAY INT OF FLOAT, v : FLOAT)
=> INT(-1 .. INDEXOF(a).MAX);
ASSERT INDEXOF(a).MIN = @8;
FOR {1 : INDEXOF(a) REPEAT
IF a(i) = v THEN
RETURN {;
END IF;
END REPEAT;
RETURN -1;
END FUNC searchl;

] PROC sort (VAR a : ARRAY INT OF STRING[ASCII]);
ABBREV x : INDEXOF(a);
FOR 1 : INT(x.MIN .. PRED(x.MAX)) REPEAT
FOR j : REVERSE INT(1 .. PRED(x.MAX)) REPEAT
CONST k := § + 1;
IF a(J) < a(k) THEN

CONST t := al(j);
alJ) := a(k);
a(k) := t;

END IF;

END REPEAT;
EMD REPEAT;
END PROC sort;
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5. EXPRESSIONS
5.1 DATA ITEMS

}

There are five Rinds of data items: defined variables, dynamic variables, defined constants,
readonly data items, and temporary data items. Defined variables and constants are described in
’ Section 4.2. Dynamic variables are described in Section 4.4.3, Readonly and temporary data items are

discussed below.

The term yoriable is used to refer to defined and dynamic variables. The term constant Is used to
refer to defined constants, readonly data items, and temporary data items,

» s — e

! RULES

A data item can hold a single value. The value of any data item may be accessed (e, read). The
value of variables (both defined and dynamic) and their components may also be modified. The value
of other data items may not be modified.

A readonly data items is a variable whose use is restricted in certain contexts. Within those

contexts, the value of the readonly data item cannot be modified directly, In some cases, however, it
is possible for the value of the readonly data item to be modified indiractly, oulside the context.

S r e e

—

{

' a} When an actual parameter variable is bound to a READONLY ¢ormal parameter, the formal
parameter is treated as a readonly data item within a deferred declaration. Changes to the
actual parameter variable will change the formal parameter (see Section 7.3). This is the only
way that dynamic variables may be made readonly.

b) Variables imported READONLY into a compound declaration are treated as readonly data items
within the compound declaration. The variable may be changed outside the compound
declaration (see Section 3.7 ),

¢} Variables exported READONLY from a capsule into a scope where the capsule is invoked are
treated as readonly data items within that scops. The variable may be changed within the
capsule (see Section 8.2)

d) Variables exported from a capsule and exposed as READONLY are treated as readonly data items
within the scope in which the capsule is invoked. The variable may be changed within the
capsule (see Section 8.1).

A< ——

e ——

A temporary data ilem is the result of a built-in or user-defined literai or constructor {(see
Sections 2.3.5, 5.6, and 5.7), the result of a function or operator (see Section 7.2), or the result of
attribute inquiry (see Section 4.5.3). For convenience, these results will be referred to as values.

The lifetime of. all defined variables and constants and formal parameters (and their components) is
the lifetime of the scope immediately containing their definition. The lifetime of dynamic variables
extends from their creation by the allocation statement until the time when they can no longer be
accessed. The lifetime of temporary data items extends from the time they are produced until the end
of the elaboration of the construct in which the temporary is used.

Initialization can optionally be specified whenever a varioble is created. For some types, if no

initialization is specifiad, there is a default initial value. Otherwise, the variable is uninitialized until a
value has been assigned to it. An attempt to access the value of an uninitialized variable will raise the

X_INIT exception,
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5.2 OPERATORS AND OPERANDS

r
’ expression
26
:;:;g§°; expression _——7
26 26
et ex0FeSS fON /‘ :;:;3505 \, expression N
}
11
D) JL type comparison
~/ j r
}
13
L subtype comparison 1
27
L primary -

An expression is a computational rule for producing a data item. An expression can be a single
operand or a combination of operators and operands. Operators are either prefix or infix operators.
Prefix operators immediately precede an operand. Infix _operators operate upon a left and right
operand to produce a value. The associalion of operands to an operator is determined by the
precedence of operators, Operands are associated with the operator of higher precedence.

Parentheses can be used to modify the association (see Section 5.3),

RULES

Operator symbol | is a prefix operator. Valid prefix operator symbols are +, -, and NOT.
Operator symbol 2 is an infix operator, Valid infix operator symbols are s3, s, /, MOD, DIV, & +, -, =,
/=, &, <=z, >, >=, IN, AND, OR, and XOR .
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The operands of prefix and Infix operators are determined based on the built-in precedence of
3 operators given below:

highest precedence
+, - (prefix)
t v
x, /, MOD, DIV, &
r + -
: =, /=, 4,420, 35, IN
NOT (prefix)
AND
OR, XOR
| lowest precedence

Within a precedence level, associativity is left to right.

. NOTES

Arithmetic Operators

Arithmetic oparators (infix ¢, -, %, /, 22, modulo (MOD), integer divigion (DIV), and prefix o+, <) take oparands of srithmetic
types (INT, FLOAT, and FIXED) and return erithmstic values.

Concatenation Operator

A concatenalion operator (infix &) takeo string and enumsrstion opsrands and produces s siring, or {akes one-dimensional arrey
operands and produces o one-dimengionsl array.

Relationa! Operators

Relational operators (infix =, not equal {/+), <, <r, >, >, sal mambership (IN)) teke arithmetic, boolean, enun.aration, string, and
set operandn and return s boolean. For boolean oporends, only « and /e sre defined. For arithmetic operands, the relational
oparators define & numorical ordering. For enumerstion end string opersnds, the reletione! operstors define a collating sequence.

R For sst operands, the relationsl oparators define a subset ralstionship.

Logical Qperators

Logical oporators (infix AND, OR, XOR, and prefix NOT) take boolean oparands and produce » boolean or tske set operands and
produce a set For boolenn operands, the logical oparators define end, or, exclusive or, and_complsment. For set cperands, the
logical oporaiors define net inlersection, union, symmeiric difference, and complament

A type or sublype comparison 13 one which is used {o compare types or sublypes snd returns o boolean value. This form of
pxpression iv doscribed in Section 4.5.1 and 452,

It 1s possible to overload the buill-in definilions of operstors to allow user-defined opsrators (see Section 132).

EXAMPLES
J int_var % produces integer
: 344 = (7 DIV 3)+2 % produces boolean
'red > enum_var % produces boolean
arrayl(2..4) & array2(3..7) % produces array
setl AMD set? % produces set

! (3+1) DIV (7-3) % produces integer
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referencing
form .

C
- —“ identifier 1 ‘r~ 1

1

range

27

primary 1

W

A

26

expression

—(7)
S

27
\e——] prirary 2 @ J\iie_r:ti‘fle_ré—-—‘

A primary is the basic form of an expression.

A wariable can be an entire variable or one or more compunents of a variable. A constant can be
an entire constant or one or more components of a zonstant. A constant can be either a reference to
a defined constant, written as a lteral, created by a constructor, the result of a function, or an
attribute value.

A :r btle or constant which is a component of a record or unicn type is referenced by dot
-2lection. An underlying dynamic varwable of an indirect variable or constant (see Section 4.4.3) is
referenced by the dot selector .ALL. A variable or constant which is one or more components of an
array or string is referenced by subscripting to produce a single component or slice.

RULES

I atifier 1 must be associated with a variable or constant in the scope immediately containing the
expression conta. -ing identifier i.

The result of elaboration of a parenthesized expression is the result of elaboration of the
expression,

NOTES

Rulna for subscripling are descrbed in Apperdix C undsr ARRAY ond STRING types. Rules for dot gelsction are dascribed in
Appendiv C undar REZARD end UNION typss and in Seclion 134. Uscr-dafined subscripting and dot selection 1 dascribed in
Section 134 Literals und consiruciors ore dencribed in Section 54. User-dafined htersls and constructors ere described 1n Section
135 Function invocation primaries sre described in Section 7 2. Affribute inquiry 1s describad in Section 4.5.3 Resolved constants
wre describad in Section 5.7
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E.4 BUILT-IN AND USER-DEFINED LITERALS AND CONSTRUCTORS

Literais and constructors are used to specify values for varicbles and constants.

Literals are
provided for specitying valug:_s of each basic ianguage type. For example,
TRUE % a BOOL literal
'red . % an ENUM 1iteral
32 % an INT literal
4.53E6 % 8 FLOAT literal
"This is a string."

% a STRING literal

The literal, NIL, is also provided to specify a value for all indirect types.. Chapter 2 gives forms for
built-in literals and Section 5.5 gives rules for their types and subtypes.

Values for variables consisting of multiple components are written using constructors. For exampls,

VAR a : ARRAY INT(1..18) OF BOOL;
VAR r : RECORDL re,im : FLOAT(19, ~1286.8 .. 100.8)];

a := [1 : FALSE, 2..18 : TRUE];

r := [re : 3.6, im : -5.7);
Section 5.6 gives rules for built-in constructors.

Usars can also define literal and constructor forms for new types (see Section 13.5). For example,

% suppose MILES, COMPLEX, and VSTRKING are user-defined types
% for which user-defined construstors are available

CONST d := 10.3#MILES;
VAR ¢ : COMPLEX;
VAR v : VSTRING;

{

e : 8.8, im : 2.31#CGMPLEX;

c r
v : This is the value"#VSTRING;
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5.5 MANIFEST EXPRESSIONS AND CONDITIONAL TRANSLATION

A manifest expression is an expression whose value is known during transiation. The simplest
manifest expression-is a Lteral, Manifest expressions have two important uses: first, they are used
to achieve conditional translation and second, they are used as replacement elements for generic
parameters with value generic constraints (see Section 11.3.4).

RULES

Manifest Expressions

The foliowing are manifest expressions:
a) any literal;

b) the result of any of the following built-in operators when their operands (actual parameters) .
are manifest

BOOL, INT, FLOAT operations -- all, except :=

ENUM operations -- =z, /2 &
STRING operations -~ & =, /=, component selection

c) a parenthesized expression, where the expression is a manifest expression;

d) references to-constants declared with the form
CONST id := exp;

where exp is a manifest expression; and

e) references to generic parameters with a value generic constraint (see Section 11.3.4).

No other expressions are manifest expressions.

All built-in arithmetic operations in manifest expressions are performed using the maximum
precision and range of the target system.

Conditional Translation

If the condition of an if or case staternent is a manifest expression, code is generated only for the
selected alternative body. Any translation time errors that occur in those bodies not selected will be
treated as warnings and will not prevent program execution,

If the subtype constraint (i.e., the tag value) of a union subtype (see Appendix C.6) is manifest,
then only space for that component is reserved,

NOTES

Manifest expressions are guaranised to be elaborated at fransiation time; however, this does nol prohibit the transistor from
also elaborating any othar expression whose value il can detormine.

Section 5.7 gives rules for type and subtype resolution of manifect expressione.

e
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EXAMPLES
1) Conditional translation
CONST machine := 'PDP1;
ABBREV word : UNIONL S360, S378 : bits(32),

PDP11 bits(16),
CcDC6600 : bits(68)] (machine);

.
.
.
.

IFf machine = 'PDP11 THEN
END TF;
CASE machine
WHEN 'S366, 'S378 =
WHEN 'PDP11 =

WHEN 'CDC66@8 =5 ...
END CASE;
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Constructors are used to construct values for records, unions, arrays, and sets.

RULES
Values can only be constructed for assignable types.

; For a record or union constructor which is resolved to a record type, there must be a value

specified for each component of the record type, and the components must be specified In the same
order as in the record type.

For a record or union constructor which is resolved to a union type, there must be a value
! specified for only one component of the union type.

\ For an array constructor which is resolved to some array subtype, there must be a single value

specified for each component. The range form is used to specify a single value for some contiguous
range of components,

For a set constructor which is resolved to a set type, there can be zero or more values specified,

where each value must hav/: the component type of the set. An empty set constructor is the value of
an empty sel. ’

| NOTES

Section 5.7 gives rules for typs and-subtypa resolution of constructors.

EXAMPLE

VAR rl,r2 : RECORth,x ¢ INT(1..18),
y : BOOL,
Zz : ENUM['a, 'b, 'c]]);
VAR ul, u2 : UNION[w,x : INT(1..18),
y : BOOL,
Zz : ENUM['a, 'b, 'cl];
VAR sl, s2 : SETLENUM['red, 'blue, 'yellow, 'greenl]:
VAR al, a2 : ARRAY INT(1..3), ENUM['a, 'b, 'c]
OF INT(9..19);
VAR x : RECORDLa : BOOL,
b : SET{INT(1..10)1,
c : UNIONLd : INT(8..5),
, e : BOOL);

-

rt := fw, x : 1, y : FALSE, 2z : 'al;

I réd :=[w:1, x +2,y : TRUE, z : 'b];
. ul := [z : 'b];

u2 := Iw : 3]1;
i sl := ['red, 'greenl;
; s2 := [1;
: al := [1,'a : 8, 1,'b:1, 1,'c: 2,
| 2,'a ¢+ 3, 2,'b:4, 2,'c: 5,
| 3,'a : 6, 3,'b:7, 3,'c: 8];

a2 := [1..3, 'a..'c : 183;
x := [a : FALSE, b : [2,3], ¢ : [d : 31]
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5.7 VALUE RESOLUTION AND USER-DEFINED VALUES

resolved
constant

10

type

27

primary jrewe—

subtyoe

The resolved constant has two purposes: it can be used to create a user-defined literal or
constructor; and it can be used to specify the type or subtype of a manifest expression or constructor,
when the expression would otherwise be ambiguous.

User-Defined Values

A litera! or constructor can be defined for a user-defined type by overloading the definition of #.
This is described in Section 13.5,

Type and Subtype Resolution

All expresstons must have both a type and a subtype. For many kinds of expressions, the type and
subtype of the expression depends only upon the expression itself. For manifest expressions and
constructors, the type and subtype may also depend upon the context in which the manifest expression
or constructor appears. If the context is the right hand side of an assignment, then the type and
subtype are those of the left hand side. For example,

VAR color : ENUM[ ‘'red, 'orange, 'bluel;
VAR fruit : ENUM[ ‘'apple, 'banana, 'orangel;

color := ‘orange; % the subtype of 'orange is

% ENUM[ ‘red, ‘orange, 'bluel
fruit := 'orange; % the subtype of 'orange is

% ENUML[ 'apple, 'banana, ‘'orangel

and
VAR r : RECORD[ b : INT(1..18)];
VAR u : UNION[ a,b,c : INT(1..5)];
r :=[b: 3] % the subtype of [b :-3] is
% RECORDL b : INT(1..18)]
u = [b : 31; % the subtype of [b : 3] is

% UNIONL a,b,c : INT(2..5)]
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In some cases, the type and/or subtype of a literal or constructor can not be determined from the
literal or constructor and its context. In these cases, the type or subtype must be explicitly specified.
For example,

and

PROC p (c : coIEr);
END PROC. p;
PROC p (f : fruit);
END. I.’F‘{OC p;
p (‘'orange);

o 00

p ('orangefcolor);

ABBREV orderl : ENUM['a, 'b,
ABBREV order2 : ENUM['c, 'b,

VAR X :
VAR ¥y :

orderl;
order?;

.o '‘a ¢ 'c .
.o ra¥orderl <

e x < 'b

00

‘cé#orderl
e taforder? < ‘cforder?

lc];
‘al;

% definition 1

Y% definition 2

% illegal, ambiguous

% legal, invokes def 1

% 1llegal, ambiguous
oo % legal, true
... % legal, false

% legal, context resolves ‘b to

%

orderl

Manifest expressions can also depend upon context for their type and subtype. For sxample,

The type or subtype of a manifest

VAR s
VAR x : FLOAT(3, 0.9 ..
VAR y : FLOAT(5, 6.9
CONST pi := 3.14149;

s := "ABC" & 'CR & 'LF;

x := pi;
y := pi;

: STRINGLASCII] (5);
100.9);
.. 108.9);

% legal, subtype of right-
% hand side is resolved to subtype of

left hand side

% subtype of pi is FLOAT(3, 8.9 ..
% subtype of pi is FLOAT(5, 6.8 .. 166.8)

1¢0.8)

expression or of a constructor are resolved based on the context in

which they appear. If context is not sufficient, a default is provided for integer, enumeration, floating

point, or string values. 1

n cases where resolution cannot be-done from the context or defauit slone,

the resolved constant form can be used to explicitly specify a typs or a subtype.
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RULES

Context Resolution

If a type or subtype unresolved expression appears:

a) on the right hand side of an assignment, it is resolved to the subtype of the left hand side.

b) as an actual parameter, it is resolved to the specified type or subtype of the corresponding
formal parameter, if there is no ambiguity.

¢) within a constructor, it is resolved to the component subtype of the constructed subtype.
d) in a resolved constant form, it is resolved to the specified type or subtype.

e) for unresolved float expressions, which appear as one operand of a buiit-in binary float
operator (+, -, *, /, %%, relationals), the precision is resolved to be equal to that of the other
operand.

Default Resolution

When a subtype cannot be resolved from context, in the following cases, a default subtype Is used.
For an expression with value v, the default subtype for various types is shown below.

INT the default subtype is INT(v.v)

ENUML...1 the default subtype is ENUML...]

FLOAT the default subtype is FLOAT(p,v.v)- where p is the maximum of the
default precisions of all the float literals that are part of the manifest
expression )

STRINGLENUML...]] the default subtype is STRINGLENUM[...1] (len) where len is the
number of components in v

Explicit Resolution

When a type or a subtype cannot be resolved from context or default,-the manifest expression or
constructor is written as a resolved constant. The unresolved expression preceding the # is resolved,
if possible, to the type or subtype following #.

NQTES

The resolved constant form can slways be used lo rescive an expression with sn ambiguous type or subtype.
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.
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a1
begin statement

conound (
statement
42
. =
r—-‘ if statement | pmmame
43
(-—-7 case statement e}
A _J :
~ A a
1 L—— repeat statement |
58
i e guard statement —-——J<
63
Ne—]  wait statement A
65
L—— region statemont —J

Statements fall into two categories: compound and simple. A compound statement contains a
header, one or more bodies (with delimiters between bodies), and an ending. Any compound statement
can be prefixed and suffixed by matching identifiers. These identifiers can serve as the target of an
exit statement and, in addition, enhance program readability. Each compound statement is an open
scope. The only definilions which-are local to a2 compound statement are the matching identifiers and,
in the case of a repeat statement, the index variable, Notice, however, that each body contained In a
compound statement is a scope that may contain local definitions, A simple statement does not contain
a body, cannot be surrounded by matching identifiers, and ic not a scope. Any statement may
optionally’ be preceded by labels that can serve-as the target for a goto statement.

RULES
ql Identifier | is called a goto label and is defined in the scope immediately containing the statement

it prefixes.

Identifiers 2 and 3, called matching identifiers, must be identical: The matching identifier is defined
in the scope-of the: compound statement which it brackets.

NQTES

Goto lsbels and matching identifisrs are automatically inheriled- by -opan scopes (ses Section-25) but ars never inherited by
closed scopes rnd may never be exporied from s capsule (see Section 8.2). A matching lcbai-con nsver bo the-target of & goto
eistement, and » goio label can never be the -targol of an exit stelement.

Even though thare is no "emptly siatement”, empty bodiss sre permitied (sse Scelion 32)
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6.1 ASSIGNMENT STATEMENT
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ass1gnment

statement
. —28 — 26
variable —@-— expression [r—m——

¥

The assignment statement is used to copy the value of an expression into a variable.

ULE

The expression must have the same type as the variable; that type must be assignable (see Section
4.3). .

Elaboration of the assignment statement replaces the current value of {ine variable with the value
of the expression.

The value of the expression must satisfy any subtype constraints of the variable (e.g., range,
precision, array bounds); otherwise, the appropriate exception is raised.

NOTES

Entire arrays, array-slices, and recorde may be assigned in & single assignmant.

For rules concarning the sasignment of built-in types, ses Appendix C. For rules concerning assignment of user-definud types,
see Section 13.2,

EXAMPLES

VAR x,y ¢ INT(1..10);
VAR al,a2 : ARRAY INT(1..18) OF BOOL;

al := f{al);

a2z := al;

aldl..5) := a2(3..7);
X = 33

Yy = x + 1;

s o
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6.2 BEGIN STATEMENT

begin

statement

2

E—{ -ED—

The begin statement can be used to group together a sequence of related statements. Since the
begin statement introduces a new open scope, it is also a convenient means for localizing declarations
to the sequence of statements where they are needed.

RULES

The begin statement is elaborated by elaborating its body.

-

NQTES

All compound declarstions and compound statements conlain bocies, It in therefors unnececsary {o write » begin statement in
those contexts in order to schiave grouping of muiliple stafements into a single sfefement or lo achieve & new scope for
declergtions,

EXAMPLES

BEGIN
% swap record components
VAR x : RECORD [a,b : INT(1..18)];
READ (infile, x);

BEGIN
CONST t := x.a;
X.a := x.b;
%x.b 1= &

END; .

WRITE (nutfile, x);
END; .

o et p o 1
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1§
statement

143

26

expression
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26
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expression_@.— body |

A

END

IfF

The if statement selects one of several alternative bodias for elaboration, based on the value of

one or more boolean expressions.

RULES

Each expression must have type BOOL.

Elaboration of an if statement proceeds by elaboration of each expression in order until either an
expression with value true or a final ELSE is reached; then the corresponding body is elaborated. If

no expression has value true and no final ELSE is present, none of the bodies is elaborated.
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EXAMPLES

END IF;

IF 1 < J THEN
k := 1;

IF flag THEN
} 1 =1+ 1;
ELSEIF § < & THEN
i := 1;
ELSEIF k < 8 THEN
i := 2;
ELSE
1 :=1-1;
END IF;
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6.4 CASE STATEMENT

case .E

statement

26

@ | expression )

-
<

26

x
n
express”o 2

body

o L
ELSE = body END @

The case statement allows a body to be selected for elaboration from one or more alternate
bodies, based on the value of a single expression.

RULES

Between each WHEN and => is a list of value labels. A value label can be either an expression (a
single value label), or a range (a range value label). The expressions in all value labels and the
expression followitig CASE must be of the same type. If only single value labels appear, the type must

be one for which = is defined. If any range value labels appear, the type must be one for which = and
< are defined.

Elaboration of a case statem~-nt consists of the following steps:

a) The value of the expression following CASE is compared to the values of the value labels. A
match is found if the value of the CASE expression is either equal to the value of a single value

label or is within the range of a range value label (see Sectior. 4.1.7). The order in which value
labels are examined is undefined.

b) If one or more matches are present, then the body associated with one of the matching v...2
labels is elaborated.

¢) If no match is found and the ELSE is present, the body following ELSE is elaborated.
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d) 1f no match Is found and the ELSE is not present, the X_CASE exception Is raised.

NOTES

When more than one mﬁchin.g_vulon lsbel is found, it cannot be pradictod which of the bodies sssociated with the

{abels will bo elsborated.

tUse of the cese ststement for user defined types ia described in Section 1386.

X AMPLE

VAR 1 : INT(-108..10);

CASE 1
WHEN 6 =>s iz "IERO%;
WHEN -18..-1 => s = "NEG";
WHEN 1.5 => s := "SMALL"S
ELSE =y s 1= *LARGE";

END CASE;

VAR u @ UNION [
a : INT(1..10),

b : BOOL,
c : INT(-5..9) ] H

CASE u.TAG

WHEN 'a => u.a := u.a + 1;
WHEN ‘b => u.b := NOT u.b;
WHEN 'c => u.c = -U.Cj
END CASE;
CASE TRUE
WHEN 1>=J => max 3 i;

nu
[

WHEN 3>=1 => max 3
END CASE; )

matching
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6.5 REPEAT STATEMENT

rereal
slateenrt

12

REVERSE

subtype

{ expression

REPEAT body END @

The repeat statement anows a body to be elaborated zero or more times. The for phrase has an
index that takes on successive values of the specified subtype. The while phrase is used to achieve
conditional repetition.

RULES

For Phrase

The identcfier, called the index, is defined as a variable with the specified subtype in the scope of
the repect statement. The index is treated as a readonly data item within the body (see Section 4.2).

Elaboration of a repeat statement with for phrase proceeds as follows. The index is created
before the firs! repetition. During the first repetition, the index has the lowest value of the subtype
(i.e., .MIN). For each subsequent repetition, the index will have the successive value oif the subtype
(via SUCC) until the last value (.MAX) is reached. If REVERSE is specified, the index has the value
MAX for the first repetition, and has successive values (via PRED) until the last value (.MIN) is
reached.

While Phrase

The expression must have type BOOL. Elaboration of the repeat statement with a while phrase
repeatedly elaborates the body while this expression is true. The value of the expression is tested
prior to each elaboration of the body.

NOTES
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Tho index is locsl to the repest statement, ie, neither its definition nor ity value is directly available outside the repest
ststemani If the subtype of the index has no velues the body is not elaborated.

Additional termination canditions can be inserted anywhare wilhin the body of a repeal stifement by the conditional use of an
el stalemeant (sse Saction 8.5),

Une of the repeat stalement for user-defined types is described in Section 137,

EXAMPLES
r:=0;
q := 0;
WHILE y <= r REPEAT
r:=r-y;
g :=q+1;

END REPEAT;

VAR a : ARRAY INT(1..n) OF INT(i..n);
FOR 1 : INT(1l..n) REPEAT

a(i) := 1;
END REPEAT;
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6.6 EXIT STATEMENT

exit
statement

identifier

The ex:it statement terminates the elaboration of an enclusing compound statement.

RULES

The identifier must be known as a matching identifier,

Elaboration of the ezit statement causes the elaboration of the compound statement bracketed by
the matching identifier to be terminated.

NOTES

An exit stafement cannot be used to rsnsfer control oul of a compound declarstion (procedure, funclion, etc), since matching
identifiars are neveu inherited by cloved scopes.

EXAMPLES
J =85
search FOR 1 : INT(1l..n) REPEAT
IF a(i) = v THEN
} = 45
v XI” search;
END IF;
END REPEAT search;
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6.7 RETURN STATEMENT

'
N return
2§
e, ex0ression  femememem——

statement
The return statement terminates the invocation of a compound declaration (i.e., procedure,
function, task, or capsule).

RULES

Elaboration of a return statement causes elaboration of the smallest enclosing procedure, function,
task, or capsule to be terminated.

Expression must be present if the terminated construct is a function and may not be specified for
any other construct. The type of the expression :aust be the same as that of the function result (see
Section 7.2).

NOTES

A refurn statement is not needed for procedurey, isks, and capsules whose only “return point” is at the end of the body. The
sisboration of a funciion must terminate through a relurn statement (or by reising an exception).

EXAMPLE

FUNC search (a : ARRAY INT OF INT, v : INT) =) INDEXOF(a);
FOR 1 : INDEXOF(a) REPEAT
IF a(i) = v THEN
RETURN 1;
END IF;
END REPEAT;
RAISE search_failure;
END FUNC search;
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6.8 GOTO STATEMENT

goto
staterent

c

' identifier

The goto statement causes elaboration to continue at a specified statement.

RULES

The identifier must be known as a goto label
elaboration to continue at the statement labeled by the gote label.

Elaboration of the goto statement tauses

NOTES

Becausa the golo label of the target sletemant must be iocal or declared in an enclosing seope, no {ransfer is stlowed into
bodies or batween alternatives of an if or case stefement.
A goto statement cannot be used to transfer control out of a compound declarstion (Lo, procsdure, function, ete), since goto

lebels are navar inh*~"' )d by closad scopes.

EXAMPLE
sort ¢ f + INT(l..n-1) REPEAT
ati) > a(i+1) THEN
CONST t := a(i); '

a(i) := a(i+l);
a(i+l) := t;
GOTO sort;
END IF;
END REPEAT;

Section 6.8 RED LRM 8 March 197§ o
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7. PROCEDURES, FUNCTIONS, AND PARAMETERS

Procedures and functions are major language features for modularizing programs. Procedures and
functions are defined by deferred declarations. Since procedures and functions are deferred units,
they are elaborated when they are invoked, rather than when their declaration Is encountered.

A procedure is elaborated when a procedure invocation statement occurs. A function is elaborated
when a function invocation occurs in an expression,

Procedures and functions may be parameterized; when they are, actual parameters are bound to
corresponding formal parameters of the procedure or function declaration at the time of invocation.
This correspondence is based on the positions of the parameters in the formal and actual parameter
lists. ’

Procedure and function declarations, like all deferred declarations, are closed scopes. Any
variables from the enclosing scope used by a procedure or function must be explicitly imported.
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7.1 PROCEDURE DECLARATION AND INVOCATION
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A procedure Is invoked by a procedure invocation statement to perform some action.

X m e
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RULES

Identifier or definable symbol 1 is defined to be a procedure In the scope in which the

procedure declaration appears. [dentifier or definable symbol 2 must be identical to identifier or
definable symbol |, .

Elaboration of a procedure invocation statement proceeds in the following order:
a) actual parameters are elaborated;

b) actual parameters are bound to the formal parameters of the named procedure (see Section
7.3% and

¢) the body of the named procedure is elaborated.
NOTES

A procedure declaration is a closvd scnpe (see Soction 35); the formal parameier names sre defined in this scope.

Proceduras may be overloaded and may be generic. Overloading, genarics, and use of the {ronsiation time property list are
discussed in Chapter 11 Use of defineble symbol names is discussed in Section 132.

The order in which ecfus/ perameters sre elsborated and bound is unspecified.

EXAMPLE

PROC swap (VAR x,y : It/
CONST t := x;
X 1= ¥;
y = ¢

END PROC swap;
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A function differs from a procedure in that a function produces a result, a temporary data item
(see Section 5.1). This result is obtained during elaboration of the body by elaborating s return
statement which specifies the value of the result to be produced. A function is elaborated when a
function invocation occurs as an operand in an expression,

RULES

Identcfier or definable symbol ! is defined to be a function in the scope in which the function

declaration appears. Identifier or definable symbol 2 must be the same as identifier or definable
symbol {.

The type or subtype following => is known as the result type or subtyp_g_. The result type or the
type of the result subtype must be assignable.

Elaboration of a function invocation primary proceeds in the following order:

a) actual parameters are elaborated;
b) actual parameters are bound to the formal parameters of the named function (see Section 7.3
¢) the body of the function is elaborated until a return statement is encountered;

d) a result temporary data item is created, whose subtype is the result subtype (if specified) or
the subtype of the expression in the return statement (if a resuit type is specified); and

e) the result of the function is produced by assigning (via :2) the value of the expression in the
return statement to a result temporary data item. The := definition used is the one known in
the scope where the function is defined.

There must be no way to reach the point immediately after the last statement in the body of the
function, i.e., elaboration must always complate by the use of a return statement.

.

Additional rules for the return statement are given in Section 6.7, and (for side-effects and
normallty of functions) in Section 7.2.1.

NQTES

A function decleration s o closed scope (sse Section 35), the formal parameter names end the result varisble ere defined in this
wcope,

The result subtype may depend on tha subfypes end values of the acfusl paremeiers.

Functions may be overlozded and may be gosaric. Overloading, generics, and the use of the translstion time property list is
discussad in Chapler {1 Use of definsble symbol namas is discussad in 132.

The order in which sctusl peramelers are claboreted and bound is unspecified.

EXAMPLE

FUNC hypot(sidel, side2 : FLOAT) =)> FLOAT;
RETURN sqrt (sidels#2 + side2s#2);
END FUNC hypot;
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7.2.1 NORMALITY AND SIDE-EFFECTS

There are two kinds of functions: normal and abnormal functions. The result of the invocation of
a normal function depends only upon the values of the actual parameters. Several invocations of a
normal function with the same actual parameter values may be replaced by the translator with & single
invocation (this Is called common subexpression elimination). The result of the invocation of an
abnormal function can depend upon the values of variables other than those in the actual parameters.
All abnormal functions should be preceded by the reserved word ABNORMAL. Both abbreviations ard
types are assumed to be normal; the result of invoking an abbreviation or type should depend only
upon the values of the actual parameters.

A function is said to have a side-effect if the function modifies any data whose lifetime is longer
than the function invocation. Programs are more understandable, reliable, and verifiable when
functions have no side-effecls. However, there are cases where having side-effects is useful. The
language allows normal functions to have side-effects providing these side-effects are restricted to
modifications of data items that are local to the body of a capsule in which the function is also local.
For normal functions with side-effects, the user must ensure that any common subexpression
elimination will not have an undesired effect upon program behavior.

RULES

The order of elaboraticn within expressions is not defined. This means that the order in which
side-effects occur within expressions is not guaranteed.

If more than one exception could be raised while elaborating an expression, which of these
exceptions is actually raised is not defined.

If there are several invocations anywhere in a program of a normal function, a type, or an
abbreviation whose corresponding actual parameters have the same value, these invocations may be
replaced (by a translator) by a single invocation which occurs at the point of the first of thase
invocations,

A normal function may have only CONST and REACONLY formal parameters.
If a normal function has an imports list, then:

a) the function must be local to a capsule body;

b) variables imported by the function must be defined locally in the capsule body in which the
function is local;

¢} no invocations of the function may appear anywhere within the capsule in which the function Is
defined; and

d) no variables imported by a normal function may be exported from the capsule.
NOTES

Fsilure to merk an sbnormsl function, or the prasence of an abnorme! sbbreviation or fype, masns that common subexpression
elimination mey produce undesired rasulls.

The aonly normal functions which have no psremeters are functions which alwsys produce the same constant value.




—e

-

o  ————— T— et W g oA

-

- e v—

INTERMETRICS INC.
EXAMPLES

1) A normal function with no side-etfects
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FUNC fact (i : INT) => INT(1..18008);
IF {1 ='8 THEN RETURN 1;

ELSE RETURN 1 2 fact(i-1);
END IF;
END FUNC fact:

2) A normal function, fact, with a restricted side-effect which records the number ot times it is
called. This count is returned by an abnormal function, factcnt.

CAPSULE c EXPORTS fact, factent;
VAR cnt : INT(9..10008) := 0;

FUNC fact(i : INT) => INT(1..10008) IMPORTS cnt;
% The result depends only on the value of
% the parameter, 1.

VAR r : INT(1..10000) := 1;

cnt := cnt + 1;

FOR J : INT(1..1) REPEAT

r:=rzsj;

END REPEAT;

RETURN r;
END FUNC fact;

ABNORMAL FUNC factcnt => INT(P..10008) IMPORTS cnt;

% The result, r, is not computed based only upon the
% parameters (of which there are none).
RETURN cnt; .

END FUNC factent;
END CAPSULE c;

3) A normal function with a restricted side-effect ~- a memo function
CAPSULE fmemo EXPORTS f;

VAR oldx : INT(1..108) := 1;
VAR oldy : INT(1..180) := realf {oldx);

FUNC f (x : INT(1..100)) => INT(1..100) IMPORTS oldx, oldy;
IF x /= oldx THEN

oldx :
oldy :
END IF;
RETURN oldy;
END FUNC f;

X3
realf (oldx);

FUNC realf (x : INT(1..189)) => INT(1..198);
END FUNC realf;
END CAPSULE fmemo;

————— ——
e e
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4) An abnormal random number generator function

CAPSULE randcap (initial_seed : INY) EXPORTS random;
VAR seed : INT(-1000..1908) := initial_seed;
ABNORMAL FUNC random => INT(-1608..19068) IMPORTS seed;
seed := next(seed);
RETURN seed;

FUNC next (1 : INT(~10¢0..10608)) => INT(-1900..1800);
% computes next random number
END FUNC next;
END FUNC random;
END CAPSULE randcap;

5) A symbol table

CAPSULE symtab EXPORTS look_up;
CONST size := 508;
ABBREV sym : STRING[ASCII] (8};

VAR 1imit : INT(@..size) := 0;
VAR table : ARRAY INT(1l,.size) OF sym;

ABNORMAL FUNC look_up (s : sym) => INT(8..size)
IMPORTS READOMLY 1imit, READONLY table;

FOR 1 : INT(1..si2e) REPEAT
IF table(i) = s THEN
RETURN {;
END IF;
END REPEAT;
RETURN 6;
END FUNC 1look_up;

FUNC insert (s : sym) => INT(l..size)
IMPORTS 1limit, table;

CONST 1 := lookup (s);
IF 1 /= @ THEM
RETURN 1
ELSE
Timit := 1imit + 1;
table (1imit) := s;
RETURN 1imit;
END IF;
END FUNC insert;
END CAPSULE symtab;
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7.3 FORMAL AND ACTUAL PARAMETERS

formal
parameters
A |
READONLY c type
3 identifier [ )
el

fo

actual
parameters

26

expression |

Parameters are used to pass information between a spacific invocation of a deferred unit (.o., a
procedure, function, task, capsule, type, or abbreviation) and the deferred unit.

When a deferred declaration specifies a list of formal parameters, each invocation of the deferred
unit defined by the declaration must then supply an actual parameter tor each formal parameter.
When the deferred unit is invoked, each formal parameter is bound to its associated actual parameter,
The kind of binding is specified for each formal parameter by means of a binding class.

There are four binding classes: two for passing information into a deferred unit (CONST end
READONLYY one for passing information out (QUT) and one for passing information both in and out

(VAR).
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RULES

Association of Actual and Formal Parameters

3 The number of actual ‘parometers in an invocation must be equal to the number of formal

parameters of the invoked deferred unit. Actual parameters are associsted with formal parameters
positionally.

Type Checking

Each actual parameter must have the same type as that specified for the corresponding formal
parameter (or the type of the subtype specified).

Binding of Actual Parameters to Formal Parameters

If a formal parameter specifies a type, it acquires the subtype of the actual parameter with which
it is bound.

— g

If a formal parometer specifies a subtype, the formal parameter has that subtype; if the binding
class is VAR or READONLY the actual parameter must have an equal subtype (otherwise the X_SUBTYPE
exception is raised).

The binding class is CONST when no binding class is explicitly specified. The actual parameters
associated with VAR and OUT formal parameters must be variables. For CONST and OUT, the parameter
! must have a type for which assignment is detined. Rules for each binding class are given here. .

CONST The formal parameter is a local constant to which the value of the actual
parameter is assigned (via :=)

VAR The formal parameter is a local name for the actual parameter variable.

ouT The formal parameter is a local variable which is assigned (via :=) to the actual

parameter variable upon normal completion (i.e., completion other than as the
result of an unhandled exception) of the invocation,

READONLY The formal parameter is a local name for the actual parameter. The formal
parameter is treated as a readonly data item.

& For CONST and OUT formal parameters, the definition of assignment used is one known in the

cope where the formal parameter definition appears. &/ocl,
Qrder of Binding . F/b‘
The order in which actual parameters are bound to formal parameters is undefined. A subt
specified for a formal parameter may not depend upon _valus _or subtype of other formal

Earameters.
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NOTES

Since thare ars two input tinding clavses, CONST and READONLY, there sre some guidelines on whaen each should be uged.

CONST The-formel perdmeter is o copy of the actual peremeter. In mosi cases, fhis is the correct binding to uss, since
it prevents the occurrence of aliasing snd unintended sharing.
READONLY The formel psrometer iy a local name for the acfusl pavsmeter. This binding class must be used when

"a) the- ‘or type is a type for which asgignment in not defined; or
b) sharing is awuired (see Section 19.6).

When large objects are o be Passed as input, the CONST binding may be less efficient (sinca copying Is involved) than the
READONLY binding. Howaver, in many casas, » {ransistor can optimize CONST bindings so thet no copy ia required.
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8. CAPSULES

Capsules are the basic unit of separate translation (see Section 3.1) and can also be nested within
other language constructs. Capsules can be used to create common data pools, libraries, and abstract
data types, as well as independent, executable programs.

A capsule, like a procedure, is a deferred unit which is invoked. Capsules differ from procedures
in that definitions local to a capsule body may be made known outside it. Selected definitions can be
made locally known in each scope where the capsule is invoked. The body of a capsule can contain

statements as well as definitions. These statements are elaborated !o initialize variables and constants
defined in the capsule.

There are two ways in which a capsule can be invoked.

1) It can be invoked as new. Each such invocation will cause the capsule to be elaborated. Local
variable and constant declarations in the capsule body create different variables and constants
at each new invocation. Capsules invoked as new may be parameterized. Actual parameters
are supplied each time a capsule is invoked and serve to specialize the capsule,

2) It can be invoked as old. In this case, all old invocations will reference a single version of the
capsule which was elaborated upon entry to the scope where the capsule was defined. Each

old invocation will reference the same set of variables and constants from the capsule. Capsules
which are invoked as old may not have parameters.

NOTES

Definitions that ara known in a scope come from thres sources. local definitions writtan in the scope, definitions which become

locally known by invoking a capsule 1n that scope, and definitions whizh sre svailsble {(aither implicitly or through an imports list)
from the enclosing scopo.
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8.1 CAPSULE DECLARATION AND INVOCATION
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A capsule declaration is invoked t_o make selected definitions in its body known In the scopes
where invocations of the capsule appear.

RULES

Capsule Declaration

e 0 pamnt 5 e e et S v

Identifier 1 in a capsule declaration is defined to be a capsule in the scope in which the capsule
declaration appears. Identifier 2 must be the same as identifier f.

A capsule declaration which is invoked as old or which is a translation unit may not ... re any
formal parameters. A capsule may not have formal parameters of the OUT binding class.

Capsule Invacation Declaration

The capsule with name identifier { is invoked.

The lifetime of actual parameters passed to RL~UONLY and VAR forr -l parumeters must be greater

than or aquai to the lifetime of the capsule invocation declaration containing those actual parameters.

A capsule invocation declaration has two effects: it causes elaboration of a capsule declaration
and it makes selected definitions visible. There are two ways in which a capsule may be invoked:

a} As a new invocation (if NEW is specified).
b} As an old invocation (if NE¥ is not specified).

Elaboration of a new capsule invocation declaration consists of

a) elaborating the actual parameters;

b) binding the actual parameters to the formal parameters of the invoked capsule (see Section 7.3)%
and

¢) elaborating the body of the invoked capsule.

If there are any old invocations of a capsule, the body of the invoked capsule is elaborated once
upon entry to the scope in which the capsule declaration appears.

A capsule invocation declaration makes selected definitions that are lecally known in the body of
the capsule also locally known in the scope where an invocation of the capsule appears (see Section
B.2). For new invocations, these definitions are the ones that have been created during elaboration of
the cagsule invocation declaration. For old invocations theee definitions are the ones that were
created upon entry to the scope whete the capsule declaratio . appears.

The lifetime of any definitions made known by a new cap.ule invocation declaration is equal to the
lifetime of the capsule invocation declaration. The lifetime of any definitions made known by an old
capsule invocation is equal to the lifetime of the declaration of the invoked capsule.

If an invocation includes a RENAMING list, there must be a definition known {as a result of the
visible list) for each identifier 2 and definable symbol 2 that appears. For each item in the list of the
form

name 2 TO name 3
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ali definitions that
capsule invocation
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would be known as name 2 are known instead as name 3 in the scope where (e

declaration appears. If name 3 is 2 definable symbol, all definitions of name 2 must

satisfy all restrictions upon definitions of that definable symbol

It EXTERNAL is

specified, then identifie ! must be the name of some separate translation unit. If

EXTERNAL is not specified, a definition for identifier { must be known in the scope in which the

capsule invocation

declaration appears.

I there are several capsule invocat.on declarations local to the same scope, then none of these

declarations may
declaration, makes

NOTES

contain any uses of the definitions that it, or any later capsule invocation
known,

A capsiie declaralion is the only language construct to include #n exporto list.

A capsule declaralion is & closed scope. The only Cefinitions which are local to a capsule declarstion, as opposed to the body of
the capsule, are formal parameter definitions (xas Section 3.5).

Verisbles declared in the capsule that sro not exporled act as "own” date of the capsule. Like all data in the capaule, such
varlsbies come into exisience wach lime the body of lhe capsule iz elaborated; the stelements in tha capsule body may bs used to

initialize them,

Transistion time preperty lists ere used to overlosd capsulos end to craate generic capsules.

EXAMPLES

1)} Common group of declarations.
CAPSULE device_tables (ntty : INT, nprint : INT) EXPORTS ALL;

CONST console := 1;

VAR tty_tab ¢ ARRAY INT(1 .. ntty) OF ity_info;
VAR printer_tab : ARRAY INT(1 .. nprint) OF print_info;

FOR i : INT(1 .. ntty) REPEAT
init_tty (tty_tab(i), 1);
END REPEAT;

FOR 1 : INT(1 .. nprint) REPEAY
init_printer (printer_tab(i), 1);
END REPEAT;

END CAPSULE device_tables;

LX)

% Typical use
EXPOSE ALL FROH NEW device_tables (10,2);
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2) Abstract data type example,

CAPSULE queues EXPORTS queue, init_queue, enter, remove;
Lo . ABBREV.alem : INT(0..25%);

TYPE queue (n : INT) : RECORD{ first,last : INT(@ .. n-1),

num s INT(B .. nm),
items : ARRAY INT(8 .. n-1)
OF elem];

PROC init_queue (VAR q : queue);
ASSERT q.n > 8;
q.first :
q.last
q.num
END PROC 1init_queue;

’H
g;
8;

PROC enter (VAR q : queue, r : elem);
ASSERT g.num < g.n;
g.items(g.last) := r;
q.last := (q.last + 1) HOD q.n;
g.num := q.num + 1;

END PROC enter;

PROC remove (VAR q : queue, OUT r : elem);
ASSERT q.num > 8;
r := q.items(qg.first);
g.first := (q.first + 1) MOD q.n;
g.num := g.num - 1;
END PROC remove;

END CAPSULE queues;

3) Exposing a definition makes the definition locally known and, thus, able to be exported.
CAPSULE ¢ EXPORTS x;

VAR x ...
END CAPSULE c:

CAPSULE b EXPORTS x,y; % only locally known definitions
. % can be exported.
VAR y ...
EXPOSE x FROM c; % makes x locally

% known in b
END CAPSULE b;

115
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8.2 VISIBLE LIST

visidle
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definable symbol |
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Visible lists control the availability of the definitions that are local to the body of a capsule, to
those scopes where the capsule is invoked. Visible lists appear in two places:

a) After the word EXPORTS in the header of a capsule declaration. This visible list exports
selected definitions, which are local to the body of the capsule, to invocations of the capsule.

b) After the word EXPOSE in a capsule invocation declaration. This visible list makes selected
definitions which were exported from the invoked capsule, known in the scope where the
capsule invocation declaration appears.

RULES

Visible List in_a Capsule Declaration

If ALL is specified, all definitions which are local to the body of the capsule, except goto label
definitions, are exported.

If NONE is specified, no definitions are exported.

If a list is specified, all definitions which are local to the body of the capsule, and whose names
appear in the list, are exported. Names of goto labels may not appear. There must be a definition,
local to the body of the capsule, of each name that appears in the list. The name of any variable
definition may be preceded by READONLY; in this case the variable is treated as a readonly data item
in thase scopes where it is exposed.
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Visible List in a Capsule Invocation Declaration

If ALL is specified, all definitions exported by the invoked capsule are made known.

If NONE is specified, no definitions are made known.

If a list Is specified, all definitions which were exported from the invoked capsule and whose
names appear in the list are made known. There must be an exported definition for each name that
appears in the list. The name of any variable definition may be preceded by READONLY; In this case
the variable is treated as a readonly data item in the scope where the capsule invocation appears.

NQTES

The capabilily of specifying ALL in s visible lisi makes il sasy fo creste common data pools and libraries. Exporting no
detinitions is useful for main tranalation umts. Exporting some definitions is useful for the creation of sbstract date types.

VWhen a fype 1 made visibla, sssignment and selection oparations are not automatically mede visble. However, attribute inquiry
for that fype is sutomatically made visible when the fype is made visitle.

Capsule formal psrameters and defimtions which are available from the enclosing scope, may not be exported since they ere not
{oca! to the capsule body.

The visible list of the capsule invocation declaration provides » convenient method of access conirol. For example, suppoue the
capuule math_library hos been defined es a lbrary of mathemalical functions. In one scope only some of the functions mey naed to
be known. The capsule might be invoked a8

EXPOSE integrate, mean FROM math_library;
In some other scope o different set of functions might be needed. The invocation thero might be
EXPOSE sin, cos FROM math_library;
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9. EXCEPTION HANDLING

A major design criterion for this language is that it contribute toward the reliability of the systems
that it is used to develop. Toward this end, a language facility, called exception handling, is provided
so that a user can gain control and take appropriate action when 8 runtime error occurs. Both
user-defined and language-defined runtime errors can be handled in this way.

There are three parts to exception handling: the definition of an exceptional condition, cslled an
exception; the occurrence, or raising, of the exception; and the handling of the raised exception.

Exceptions are either language-defined (see Appendix D) or defined by the user in an exception
declaration, Exception names follow normal scope rules. Exceptions are raised explicitly by the
elaboration of a raise or reraise statement. Language-defined exceptions are also raised automatically
when an exceptional condition occurs during elaboration. The handling of an exception is achieved by
the guard statement, which allows the user to gain control when an sxception is raised. The guard
statement consists of two parts: a guarded body in which an exception might be raised; and a set of
handlers which can handie exceptions raised in the guarded body. Separate handlers can be provided
for specific exceptions, and a general handler can be provided for all exceptions not handled
separately. When an exception having a handler is raised in the guarded body, the elaboration of the
guarded body is terminated and the body of the handler is elaborated. Elaboration of the guard
statement is completed when elaboration of the handler is completed.

Guard statements may be nested within one another. When an exception is raised, the guard
statemen!t containing the guarded body in which the exception is raised is examined first, 1f it does
not contain a handler for that exception, then enclosing guard statements are examined for the
appropriate handler, starting with the innermost. The guard statement selected must meet two
criteria: it must contain a handler for this specific exception; and it must not contain a deferred
declaration which contains tha raised exception.

If no enclosing guard statement is found before an enclosing deferred declaration is found, for all
deferred declarations except tasks, the search for a handler for the exception continues in the scope
containing the invocation of the deferred unit, In the case of tasks, the task activation is terminated
and no further searching occurs.

If the search for a handler causes completion of elaboration of the scope in which the exception
name is defined, the exception name is changed to X_UNHANDLED and the search for the X_UNHANDLED
exception begins.

It is possible, within a handler, te reraise the exception which caused the elaboration of the
handler. This allows a local action to be taken before searching rasumes for another handler for the
same excepfion,

When efficiency of generated code is more important than the guarantee of reliability, the
suppress pragmat can be used to suppress the raising of exceptions (see Appendix B).
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9.1 EXCEPTION NAMES

‘ . @
i exception
declaration

EXCEPTION

identifier

Exception names are defined by the exception declaration.
RULES

Each (dentifier is defined as an exception in the scope immediately containing the sxzception
declaration.

NOTES

Exceplion names have the same scope rules ae alf other names (ses Section 35).

Language-definud exceptions (see Appendix D) are predefined. No user-written exception decleration in needed.
EXAMPLES

EXCEPTION stack_overflow, stack_underfiow;
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9.2 GUARD STATEMENT

statement

2
'\ ( Guaro ) body 1

body 2

C
I identifier )

A

A guard statement allows the user to gain control and take appropriate action when an exception
is raised.

RULES

Each identifier between WHEN and => must be known as an exception. All identifiers in a guard
statement must be distinct.

Body 1 is known as the guarded body of the guard statement. Each body 2 is a handler for the list
of exceptions following,the preceding WHEN. Body 3 following ELSE =) is a handler for all exceptions
not otherwise handled.

Elaboration of a guard statement consists of elaboration of the guarded body.
NQTES

An exception may only be explicilly referenced in a gusrd statement if tho guere stotement is in 8 scope in which the exception
name is known,

The semantics for finding & hondler when an exceplion is raised is described in Section 9.3

EXAMPLE
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GUARD
OPEN(infile, "filel", 'OLD);
BY
WHEN X_FILENAME =)
report( "Bad name-filel®™ );
WHEN X_NOFILE =>
report( "Filel does not exist" );
WHEN X_FILE =>
report( "Attempt to open infile twice® );
ELSE =>

report( "Unknown error when opening infile® );
END GUARD;

9.3 RAISING OF EXCEPTIONS

raise .;

statement

identifi, s

The raise statement can be used to raise an exception.

RULES

The identifier must be known as an exception,
When an exception is raised, a search is made for the smallest enclosing:

a) guarded body of a guard statement;
b) deferred declaration; or
c) body.in which the exception is defined.

If the body of a guard statement is found and that guard statement has a handler for that
exception (either specifically or via an ELSE clause), elaboration of the guarded body is terminated
and the handler for that exception is elaborated. If the guard statement does not have a handler for
that exception, the elaboration of the guard statement is terminated and that exception is reraised at
the place where the guard statement appears,

If a deferred declaration which is not a task declaration is found, the Invocation of the deferred
declaration is terminated and the exception is reraised at the point of invocation of the deferred unit.
If 8 deferred declaration is found which is a task decloration, the task activation is terminated.

If the body is found in which the exception is defined, the X_UNHANDLED exception is raised.
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NOTES

An sxcoption may only be raised where its name is known Certain langusge-defined operations may raise language-defined
exceplions,

The {ransiator will issue 8 warning massage if it discovers that an exceplion will always be raived at runtime. The transintor
will produce a list, for each deferred decleration, of exceplions which could be raised but not handied when thet deferred
declaration in invoked. It is possible to raise the X_TERMINATE exception in another activation (see Section 16.2).

EXAMPLES

1) Handling an exception raised in an invoked function.

FUNC sagrt (x : FLOAT) => FLOAT;
ASSERT x >= 0.6;

END FUNRC sqrt;
GUARD
g := sqrt (r);
BY
WHEN X_ASSERT => q := 0.8;
END GUARD;

2) Given two procedures, actionl and action2, which both do the same thing; first try actionl and,
if it fails, then try action2.

GUARD

actionl;
BY

ELSE =) action?;
END GUARD;

3) Changing to a more meaningtul exception,

GUARD

insert (table, new_entry);
BY

WHEN X_ASSERT =)> RAISE table_error;
END GUARD;
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9.4 RERAISING EXCEPTIONS

reraise

statement

The veraise statement permits some action, such as clean-up or statistics gathering, to be taken
when an exception is raised, before the exception propagates outside the guard statement.

RULES
The reraise statement must be contained in the body of a handier of a guard statement.

Elaboration of the reraise statement is equivalent to elaboration of
RAISE x;
where x is the exception being handled.
NOTES

Since sn excaption must be raised during elaboration of a guarded body of & gusrd stefement in order to be handied by the
hendler of that guard sfalement, the rersising of an exception in # handler does not cause recursive eleborstion of the ssme handler
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EXAMPLES

1) How to do local cleanup when an exception is raised,

BEGIN
OPEN (infile, "XYZ", 'NEW);
GUARD
% Process infile
BY
ELSE =>
CLOSE (infile, 'DELETE);
RERAISE;
END GUARD;
CLOSE (infile, 'SAVE);
END;

2) How to retry an action n times before failure occurs.

retry FOR {1 : INT(1 .. n) REPEAT
GUARD
action;
EXIT retry; % successful completion
BY
ELSE =>
IF 1 = n THEN
RERAISE;
END IF;
END GUARD;
END REPEAT retry;
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10. MULTITASKING

The multitasking facilities provide a means for scheduling and synchronizing multiple concurrent
elaborations. The basic unit of multitasking is a task, which is defined by a task declaration. A task is
invoked using the task invocation statement which produces an activation of the task. Each activation
is "named" by a unique activation variable. Elaboration of task activations is under the control of
schedulers which determine when elaboration of each activation can proceed.

Tasks can communicate in two basic ways: by message passing and by the use of shared
variables. Message passing works well for distributed systems and contributes to program reliability.
Several task activations can communicate via shared memory simply by importing the same variables,
or by passing these variables as VAR or READONLY parameters. No ‘automatic mutual exclusion s
provided for shared variables; this must be accomplished by the user. The region statement is
providad for this purpose.

Clocks and delays are aiso provided, both for real time and for activation times.
Non-busy multi-way waiting is available to wait for messages and for delays.
There are two levels of multitasking facilities

1} High-Level - These facilities will be used for most applications. Inciuded here is 2 priority
scheduler (via ACT variables), message passing (via MAILBOXes), and mutual exclusion (via
DATA_LOCKs). These facilities are described in this chapter.

2) Low-Level - These facilities are provided to allow system programmers to define new
schedulers and synchronization schemes for applications where the standard high-level facilities
are not appropriate. 'Once defined, these new facilities can be used by application programmers
in a manner that is similar to that used for the built-in high-level facilities. Low-level facilities
are described in Chapter 14, Included there is a detailed description of the semantics of tha
create, wait, and region statements. Also included is a discussion of the LATCH data type, the
low-level details of the ACT priority scheduler, and of techniques for handiing hardware
interrupts,
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10.1 TASK DECLARATION, TASK CREATION, AND ACTIVATION VARIABLES
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A task declaration is similar to a procedure decloration. Tasks, like procedures, are elaborated
only when invoked. A task is invoked by a task invocation statement which creates an activation of
the task which is elanorated concurrently with the elaboration of its invoker. When a task s invoked,

an activation variable is specified as a way of "naming” that activation. All activations are named. For
example,

TASK t (1 : INT);

¢ o
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END TASK t;
VAR av : ACT; % an activation variable

CREATE t(3) NAMED av; % invokes t with actual parameter 3
% and associates activation
% variable av with this
% activation of ¢

In addition to "naming" the activation, the activation variable determines which scheduler is to
control the activation. The type of the activation variable is used in this determination. The ACT type
selects the built-in priority scheduler discussed in the next section. Other activation variable types
can also be defined for other kinds of user-defined schedulers (see Section 145). For example, a task
may be scheduled with a user-defined round robin scheduler as follows.

TASK ¢;
END TASK t;
VAR arr : RR_ACT;

CREATE t NAMED arr;

An activation variable can be either active or inactive. All activation variables are initialized to be
inactive. When a task activation is created, the aclivation variable which names the activation is
changed from inactive to active. When the activation is complete, the variable is changed back to
inactive.

An activation having an active activation variable .an be either eligible to run or waiting. When an
activation is created, it is eligible to run. Some operations (e.g,, a DELAY) will cause an activation to
wait,

Each step in the elaboration of a program is part of some activation. When a program is run, the
system creates a single main_activation which elaborates the body of the main capsule. Any activation
can create other activations by elaborating a task invocation statement.

The language ensures that an aclivation of a task will not run longer than lifetime of the task's
declaration. When the scope in which a task is declared is about to be left, the current activation
waits until all activations of the task are complete,
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RULES

Task Declaration

Identifier ! is defined to be a task in the scope in which the task declaration appears. Identifier 2
must be the same as identifier 1.

A task may not have QUT formal parameters.

The lifetime_of a _task begins at the beginning of elaboration of the scope in which it Is declared
and ends at the end of elaboration of the scope in which it is declared.

When an activation is about to leave the scope of a task declaration, it waits for all the activation
variables associated with activations of that task to be inactive,

Task Invocation
Elaboration of a task invocation statement consists of

a) elaboration of the actuc! parameters;

b) binding of the actual parameters to the formal parameters of the named task (see Section 7.3%
¢) preparing the activation variable to elaborate the body of the task; and

d) changing the warieble from inactive to active. If the variable is rot inactive, then the
X_CREATE exception is raised.

The lifetime of the activation variable in a task invocotion statement rust be greater than or equal
to the lifetime of the invoked task.

Any actual parameters passed either READONLY or VAR must have a lifelime groaier it ¢ equal
to that of the invoked task.

NQTES

A more detniled dascription of the semantics of the fask iavocstion statement can bo found @ Sselis (€53
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10.2 THE ACT PRIORITY SCHEDULER

There is a built-in priority scheduler. Elaboration of all task activations whose activation variables
have type ACT is controlled by this scheduler. This section discusses the high level operations for the
ACT scheduler. Low level ACT operations are discussed in Chapter 14. Techniques for defining other
schedulers are discussed in Section 14.5,

ME

The result of the ME function is the activation variable of the activation that invokes ME,

Priorities
Scheduling of task activations whose activation variables have type ACT is determined based on
priorities. Each activation has a priority which is an integer with subtype

INT(9..255)

Priority G is the lowest priority (the priority least likely to be scheduled) and priority 255 is the
highest priority (ihe priority most likely to be scheduled). The priority of an activation, av, can be
obtained by invoking the function

PRIORITY (av)

whose result is the priority of av.

The priority of any activation, av, can be set to value n, by invoking the procedure

SET_PRIORITY (av,n);

The initial priority of the main activation of a program is set by the user when the program is to
be run. If no priority has been explicitly set, the initial priority of other activations is equat to the
current priority of the creating activation.

Exterminale
Elaboration of the procedure invocation

EXTERKMINATE (a);

will cause the X_TERMINATE exception to be raized in the activation currently associated with
activation variable a. The invocation-has no effect if a is inactive. If a is waiting, then it becomes
eligible to run,

Scheduling_Algorithm

At any time, there will be some activations which are eligible {0 be run. The ACT scheduling
algorithm decides which of the activations are to be run. The languzge makes no assumptions about
the number of activations which can be run concurrently, On some target systems, at most one
activation will be running while on other systems, several activations can be running concurrently.

For the set of activations which are eligible to run, an activation with a higher priority will be

i

e b v e it
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scheduled before an activation with a lower priority and, for activations having the same priority,
those activations which have been eligible for the Iongest time will be scheduled over the other
activations.

NQTES

ME, PRIORITY, SET_.PRIORITY, and EXTERMINATE are described in datail under the ACT type in Appendix C.18. The scheduling
algorithm is describad in detail in Section 14.2,

EXAMPLES

; 1) Setting priorities
TASK ¢;

IF important THEN
f SET_PRIORITY( ME, PRIORITY(ME) + 10 );
ELSE
SET_PRIORITY{ ME, 18);
END IF;

END TASK t;
VAR ta : ACT;

SET_PRIORITY( ta, 18 );
CREATE t NAMED ta;
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10.3 MESSAGE PASSING USING MAILBOX VARIABLES

Message passing is done via mailboxes. Activations can send messages to a mailbox, and other
activations can then receive these messages from the mailbox. A mailbox Is a variable having a
mailbox type. For example,

VAR m : .MAILBOX[ STRING[ASCII)(4) ] (3) ;

Here, m is a mailbox of size 3 capable of holding messages, each having the subtype
STRINGLASCIII(A). The size specifies that, at any time, up to 3 messages could have been sent but
not yet received.

A mailbox is initially empty (i.e. holds no messages). The SEND procedure is used to send a
message to a mailbox. For example,

SEND(m, "MES1");

sends the message "MES1" to mailbox m Additional messages can be sent to m by additional sends.
for example,

SEND(m, "MES2");
SEND(m, "MES3");

The RECEIVE procedure is used to receive a message from a mailbox, For example,
VAR v : STRINGLASCII] (4);

éééEIVE(m,v);

will place the next available message from mailbox m into variable v. Messages zre stored in a mailbox
in order of arrival so that the first message to be received from a mailbox will be the first message
sent to the mailbox. In the above example the value of v atter invoking RECEIVE would be "MES1™".

When a mailbox becomes full, no more messages can be sent. If an attempt is made to send a
message to a full mailbox, then the sender will wait until the mailbox is no longer full, 1If there is more
than one activation waiting as a result of attempting to send a message to a full mailbox, these
senders are queued in the order in which-the sends were done. The first sender will therefore be the
first to complete the send. A similar queueing occurs when receives are attempted on an empty
mailbox.

Mailboxes with Size 0

When the size of a mailbox is @, the sender can never get ahead of the receiver. For example,
VAR ml : MAILBOX[ STRINGLASCII1{(4) ] (8);

In this case, the SEND{m1, "ABCD") will wait unless there is some receive request outstanding. In
this latter case, SEND(ml, ®ABCD¥) will send the message "ABCD"™ directly to the requesting
receiver.

RULES

Messages for mailboxes must have an assignable type.
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Messages sent to a mailbox and received from that mailbox are handled on a first in (i.e., tirst sent

to the mailbox) first out (e, first received from the mailbox) basis. In particular, the i'th recelve will
get the message from the i'th send.

‘ NOTES

-

The SEND and RECEIVE operations can also ba used as waiting invocations in the wail stslement (see Section 19.5),

In a typical program structure, each mailbox ropresents a service which csn have sevaral "servar” activations that actuslly do
the work. This struciure allows the requaster to be ignorant of the sctual number of sctivations providing the service, end their
identitien.

More details about the MAILBOX type cen be fourd in Saction 14.1,

The MAILBOX type, slong with the SEND and RECEIVE procedures sre described in detail in Appendix C.11.

EXAMPLES
1) Simple producer-consumer,
VAR m : MAILBOXLs] (5);

TASK produce IMPORTS m, infile, READONLY sdone;
VAR data : s;
WHILE NOT EOF(infile) REPEAT
READ(infile, data);
SEND(m, data);
END REPEAT;
SEND(m, sdone);
END TASK produce;

TASK consume IMPGRTS m, outfile, READONLY sdone;
VAR data : s;
WHILE TRUE REPEAT
RECEIVE(m,data);
IF data = sdone THEM
RETURN;
END IF;
WRITE(outfile, data);
END REPEAT;
END TASK consume;

VAR pr, cs : ACT;

CREATE produce NAMED pr;
CREATE consume NAMED cs;
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10.4 CLOCKS AND DELAYS

There are two basic kinds of clocks: a single real-time clock and a clock for each activation, The
reai-time clock measures the elapsed real-time since the program began to run. An activation clock
measures the total real-time that a particular activation has been actusily running since it was created.
All times are positive integers and are measured in ticks. Ticks are an implementation-dependent unit,
There are standard integer configuration constants

MILLISECONDS

SECONDS

MINUTES

HOURS
whose values are the (closest integer to the) number of ticks that occur in each millisecond, second,
minute, and hour. The function

TIME
returns the value of the real time clock in ticks. The function
TIME(a)

returns the value of the activation clock for activation a in ticks,

An activation can be delayed for t ticks of real time by elaborating
DELAY(t);
An activation can be delayed until the value of the real time clock is t by elaborating

DELAY_UNTIL(t);

An activation can be delayed until the value of the activation clock for activation a has the value t by

elaboraling
DELAY_UNTIL(t,a);

An activation can be delayed until some activation variable a becomes inactive by elaborating
DELAY_UNTIL_INACTIVE(a);

NOTES

The TIME, DELAY, DELAY_UNTIL, snd DELAY_UNTIL_INACTIVE procedures are descrivad in Appandix C. Tha configurstion
constanty MILLISECONDS, SECONDS, MINUTES, and HOURS are descrided in Saction 12.1.
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1) Delayminsec waits for | minutes plus j seconds of real time.

PROC delayminsec (i,J : INT):

DELAY ({1#MINUTES+J*SECONDS);
END PROC delayminsec:

2) Measuring the total time in seconds spent in running a procedure p.

CAPSULE ¢ EXPORTS p,ptime;

VAR total_time : INT(@..1900000) := 8;
PROC p IMPORTS total_time;

VAR enter : INT(8..1000000) := TIME(ME);,

total_time := total_time + (TIME(ME) - enter) DIV
SECONDS;
END PROC p;

ABNORMAL FUNC ptime => INT(9..1600000)
TMPORTS total_time;
RETURN total_time;
END FUNC ptime;
END CAPSULE ¢;

3) Performing an action every i seconds of real time

VAR t : INT(P..1000000) := TIME;
WHILE TRUE REPEAT
action;

t := t+1+SECONDS
DELAY_UNTIL (t);
END REPEAT;

4) Reusing an activation variable.

BEGIN
TASK ¢;

END TASK t;
VAR a : ACT;

WHILE NOT done REPEAT
CREATE t NAMED a;

T DELAY_UNTIL_INACTIVE(a);
f END REPEAT;
END;

PEDUSUSIT SRR AE S
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10.5 WAITING
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The watt statement, like a case statement, contains a sequence of when clauses. A wait statement
differs in that wadting tnvocations dre specified instead of expressions. A wait statement permits

waiting until one of the set of waiting invocations completes and, when it completes, elaborating the
body associated with that waiting invocation.

The following waiting invocations are bulit-in,

SEND(m,v)

RECEIVE(m,v)

DELAY(t)
DELAY_UNTIL(t)
DELAY_UNTIL(t,a)
DELAY_UNTIL_INACTIVE(a)
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The first two are used to send and receive messages from some mailbox (see Section 10.3). The last
four are used to cause delays (see Section 10.4Y” A | waiting invocations can be defined using
the low-level facilities discussed in Section/ 14.3. _Note\ that arbitrary procedure and function
invocations cannot be used as waiting invocagkons. (P

RULES ‘ .

Elaboration of a wait statement consisis of examiniRg the waiting invocations following WHEN. If at
least one can complete immediately, one of those that can complete is aliowed to completa and the
assaciated body is elaborated. If more than one could complete, only one will be allowed to complete;
the one that actually completes is not defined. If no waiting invocations can complete |mmed|ate|y,
the task activation which elaborated the wait statement waits until one can complete.

For SEND's and RECEIVE's used as waiting invocations, if none can complete immediately, the
activation that elaborates the wait statement is placed on the FIFQO waiting queue of each of the
specified mailboxes, When one SEND or RECEIVE completes, the activation will be removed from the
FIFO queues of the other mailboxes,

If a weiting invocation is SEND (m,v), the mailbox m must have a size which Is greater than zero;
otherwise, X_EMPTY_MAILBOX is raised.

NOTES

Low level details of the semaniics of the wail stalement are described in Chapter 14,

EXAMPLES

% wait on two mailboxes
TASK consume2 IMPORTS m, mi, outfile;
VAR data : s;
WHILE TRUE REPEAT
WAIT
WHEN RECEIVE(m,data),
RECEIVE(ml,data) =>
WRITE(outfile, data);
END WAIT;
END REPEAT;
END TASK consume?l;




INTERMETRICS INC. Section 10.6 139
10.6 SHARED VARIABLES '

A variable is said to be shared if two or more activations can use it. Some cases of sharing are
considered to be danperous sharing. Dangerous sharing occurs if two activations simultaneously
' modify the same shared variable or if one activation modifies a shared variable while some other
activation is accessing that shared variable. The translator will issue warning messages for those
cases where dangerous sharing might occur.

When dangerous sharing of some shared variable is possible, the user must ensure that the
activations that can use that shared variable elaborate these uses in an orderly way. If simultaneous
use does occur, the effect (including the state of the variable and any value accessed) is not defined.
For a shared variable where the user has ensured orderly access, there Is a pragmat available to
suppress the warning messages for dangerous sharing of that shared variable (ses Appendix B).

NOTES

Lat al and e2 be activations that shere some variable v in & dengerous way. Orderly sccess csn be ensured by either of the
following means:

a) Using the region stalement o surround sny referances to v in af and a2 so {hat only one of thu references can happen at
one time (see next section).

b) Synchronizing sl and 32 by using messages so thal references 1o v will not heppen simultanecualy (see example below).

. A it vt it - e, A oaan

EXAMPLES

i 1} Mutual exclusion with mailboxes.

VAR common : INT(@ .. 10);
VAR m : MAILBOXD INT(O® .. 2) 1(1);

TASK t1 IMPORTS m, common;
! VAR local : INT(O .. 18);
' VAR right : INT(8..8);

‘ RECEIVE( m, right );
common := local;
SEND{ m, right );

END TASK tl;

TASK t2 IMPORTS m, READONLY common;
i VAR local : INT(s .. 18);
i VAR right : INT{3..0);

RECEIVEC m, right );
focal := common;
SEND( m, right );

o v

END TASK t2;

VAR al, a2 : ACT;
CREATE t1 NAMED al;
¢ CREATE t2 NAMED a2;
SEND( m, 6 );
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10.7 REGION STATEMENT AND DATA LOCK VARIABLES

region
statement

28 2

(s e )| e

Use of the region statement is one way of ensuring the orderly access to a shared variable by

several aclivations. The region statement is normaily used in conjunction with a data lock variable.
For exampie,

VAR d : DATA_LOCK;

A data lock variable has two possible states: locked and unlocked. Each data lock varlable is
automatically initialized to have the unlocked state.

Basically, the region statement is elaborated by elaborating its body. However, the region
statement ensures that if several activations contain region statements, each specifying the same data
lock variable, at most one of these activations will be elaborating the body of its region statement. If
two or more activations attempt to elaborate region statements specifying the same data lock variable
simultaneously, then all except one will wait (until that one completes elaboration of its region
statement). If several activations are waiting for region access based on the same data lock variable,
then access will be granted on a first-come first-served basis.

The region statement can also be defined to work for variables with types other than DATA_LOCK
(sae Section 14.4.1).
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RULES

Elaboration of a region statement consists of the following steps:

a) lock the variable, wait if necessary until this can be done;

b) elaborate the body; and

¢) unlock the u:zriable.

Once the variable has been locked, it is guaranteed to be unlocked whenever the elaboration of

the body completes. The unlocking will happen whether the body terminates normally, ralses an
exception, or does an exit, goto, or return, :

NQTES

Tho DATA_LOCK type is dascribed in Appendix C. Delailed sementics of the region stalement and ways for ueing it with
variobies other {han data lock varisbles ora discussed in Chapler 14.

EXAMPLES

1) Simple mutual exclusion,

VAR common : INT(@ .. 19);
VAR d : DATA_LOCK;

TASK t1 IMPORTS d, common;
VAR Tocal : INT(8 .. 16);

REGION d DO
common := local;
END REGION;
END TASK t1;

TASK t2 IMPORTS d, READONLY common;
VAR local : INT(8 .. 18);

REGION d DO
local := common;
END REGION;
END TASK t2;
VAR al, a2 : ACT;

CREATE t1 NAMED al;
CREATE t2 NAMED a2;
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1. OVERLCADING AND GENERICS

Qverloading is the association of a single name with multiple deferred units of the same kind. A
name could be assoclated with several different procedures, for example, but not with a procedure
and a function. All deferred units associated with a single overloaded name will normally perform
logically related computations. For example, the overloaded name ABS is associated both with a
buiit-in function for finding the absolute value of an integer and with another built-in function for
finding the absolute value of a floating point number,

Interfaces are used t¢ match each use of an overloaded nams, during transiation, to a particular
deferred unit associated with that name.

In the simplest case, interfaces depend only upon a signature which includes the number, order,
and types of a list of parameters. The use of an overloaded name in an invocation will be resolved to
the deferred unit which has a matching signature; that is, the number, order, and types for the actual
parameters are identical to the number, order and types for the formal parametesrs. For example,

BEGIN
FUNC iszero (a : IKT) => BOOL; % iszera 1
RETURN a=0;
END FUNC iszero;

FUNC 1iszero (a : FLOAT) => BOOL; % {szero 2
CONST delta := 1.0E-5;
RETURN a < delta AND a > -delta;

END FUNC iszero; :

VAR 1 : INT(-18..19);
VAR f : FLOAT(16,-10.0 .. 10.8);

...1szero (1)... % invokes iszero 1
:::1szero (f)... % invokes iszero 2
END;

In addition to the signature, interfaces can depend upon a translation time property list specified
by a list enclosed in square brackets (i.e, {...]). The use of an overloaded name in an invocation
will be resolved to a deferred unit which has a matching translation time property list. For example,

BEGIN ’
FUNC zero [INT] => INT(92..8); % zaro 1
' RETURMN 6;
END FUNC zero;

FUNC zero [FLOAT] =)> FLOAT(19,0.8 .. 8.8); % zero 2
RETURN 0.0;
END FUNC zero;

...zero LINTI... % invokes zero 1
:::zero [FLOAT]... % invokes zero 2

[ 4

END;
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The information which is considered to be part of the interface depends upon the kind of deferred
unit. For types, the translation time progerty list is the entire interface (signatures are not part of

the interface for types). For other deferred units, the interface consists of both the transiation time
property list (if specified) and the signature.

There are two kinds of overloading: explicit overloading and generic overloading. Explicit
overloading occurs when several distinct definitions of a name are written. Explicit overloading can be
used for any kind of deferred unit except types. Generic overloading occurs when a single deferred
declaration is replicated as a result of its appearance within a generic declaration. Generic
overlcading can be used for any kind of deferred unit, -

NOTES

Names associated with variables, constants, exceptions, goto labels, or matching identifiers can not
be overloaded.

11.1 INTERFACES

Interfaces are used to resolve each use of an overloaded name to one of the deferred units
associated with that name. Interfaces include signatures (for all deferred units except types) and
translation time property lists (if specified),

RULES

Each definition of a deferred unit has a formal interface. Each invocation of a deferred unit has an
actual interface. )

Each use of the (possibly overloaded) name of a deferred unit is resolved to the deferred unit
assoclated with the name whose formal interface matches the actual interface of the use. If there is
no such-deferred unit, the use is in error. )

A 'afirations of a name conflict unless

a) They are both deferred units of the same kind, and
b) Their interfaces do not match.

The interface of a procedure, function, task, abbreviation, or capsule consists of a signature and, if
specified, the transiation time property list. The interface of a capsule or typs consists of a
translation time property list if any is specified.

Two interfaces match if:

2} Both have matching signatures or neither includes a signature, and

b) Both have matching trapslation time property lists or neither includes a translation time
property list,
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NOTES

Matching of interfaces is done during translation.

145

The scope rules (see Section 3.5) permit a local definition to override a conflicting definition in an
enclosing scope; that is, one deferred declaration will override another deferred declaration in an

enclosing scope it they have matching interfaces. A local declaration of one kind will override all
declarations of another kind when all share the same name.

EXAMPLES

1) No signature and no translation time property list

PROC p; ... END -PROC p; % definition 1

o0

H % invocation 1
2) Signature and no translation time property list

PROC p (x : INT); ... END PROC p; % definition 2

p (3); % invocation 2
3) Translation time property list but no signature

PROC p [INT); ... END PROC p; % definition 3

p [INTI;

% invocation 3
4) Both a signature and a translation time property list
PROC p [INT] (x : INT); ... END PROC p; X% definition 4

p [INT] (3); % invocation 4
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11.1.1 SIGNATURES

3 A signature is part of the interface between any deferred unit excapt a type and its invocations.
Signatures are derived from the formal and actual parameter lists and are not explicitly specified.
’ RULES

The formal signature of a procedure, function, task, abbreviation, or capsule is an ordered list of
the types or subtypes specified for its formal parameters. The list is empty if it has no formal
parameters.

The actual signature of a procedure, function, task, abbreviation, or capsule invocation is an
ordered list of the subtypes of its actual parameters. If there are no actual parameters, the list is
empty.

Two signatures match if their lists are the same length and each of their elements match, Two
types match if they are equal (see Section 4.1.5). Two subtypes match if thay belong to the same type.
A type and a subtype match if the subtype belongs to the type.

NOTES
Functlion result types or sublypes are not considered to be pert of a signature.

EXAMPLES

FUNC sign => BOOL; % sign 1
RETURN FALSE;
END FUNC sign;

FUNC sign (i : INT) => BOOL; % sign 2
RETURN 1>=8;
END FUNC sign;

FUNC sign (1,3 : INT) => BOOL; % sign 3
RETURN i+j >= 9;
END FUNC sign;

FUNC sign (x : FLOAT) => BCOL; % sign 4
. RETURM x>=0.9;
END FUNC sign;

FUNC-sign (x,y : FLOAT) => BOOL; % sign §
RETURN x+y >= 8.0;
‘END FUNC sign;

VAR cl1, c¢2, ¢3, c4, c5 : BOOL;

VAR k,1 : INT(-5@..58);

VAR q,r : FLOAT(1@, -56.0 .. 50.0);
cl := sign; % invokes sign 1
c2 := sign (k); % invokes sign 2
c3 := sign (k,1); % invokes sign 3
cd4 := sign {(q); % invokes sign 4
c5 := sign (qg,r); % invokes sign 5
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11.1.2 TRANSLATION TIME PROPERTY LISTS
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